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1 Introduction 

This document reports Quality Assurance (QA) of the Integrated Modelling Platform (IMP) 

developed within the Environment and Rural Affairs Monitoring and Mapping Project1 

(ERAMMP). It focuses on the version of the IMP used to simulate the Land Use Scenarios 

delivered to the Welsh Government (WG) between August 2020 and March 20212. This 

document should be read in conjunction with its partner document, IMP Trade Scenarios 

assumptions (see Annex-1 of the IMP Land Use Scenarios Final Report; ERAMMP Report-

602). Together, these documents act to support those in WG who use the IMP to interpret its 

outputs. Further information to support the QA of the IMP is available to WG in the 

slidepacks, data dictionaries and data cubes.  

1.1 What is the ERAMMP IMP?  

The IMP is a linked-model system that has been co-designed with the WG to support 

decision-making around the future of Welsh agriculture, and Wales’s natural environment. A 

full description of the IMP is given in Chapter 2 of the IMP Land Use Scenarios Final Report 

(ERAMMP Report-60). This is summarised in this section to provide context for the QA 

reporting. 

The IMP has been designed to enable rapid exploration of the effects of policy and 

management interventions on farm viability, land use change and various public goods in 

Wales. It takes an integrated approach that recognises that policy effects in one sector have 

indirect effects in other sectors. This allows assessment of potential unintended 

consequences of policy interventions and appraisal of potential trade-offs and synergies 

between payments for public goods.  

To do this, the IMP has been constructed as a chain of specialised models covering 

agriculture, forestry, land use allocation decisions, water, air, soils, biodiversity, ecosystem 

services and their valuation. The models pass data between them representing different 

biophysical and socio-economic interactions between sectors (Figure 1.1). The modelling 

works at the farm scale and considers each farm in Wales with a workforce of > 1 Full Time 

Equivalent (FTE).  

The top of the IMP modelling chain (the yellow boxes) focusses on identifying the potential 

profitability of all possible land use types on a given >1FTE farm. This includes taking into 

consideration that farm’s constraints (e.g. climate, soil type, elevation and special 

designations). The Land Allocation Model (LAM) compares the profitability of the different 

alternatives to decide whether the farm retains its farm type, transitions to another farm type 

or leaves full-time farming as a result of loss of revenue. The LAM then passes the bottom-

 

 

1 www.erammp.wales (English) and www.erammp.cymru (Welsh) 
2 Harrison, P.A., Dunford, R., Beauchamp, K., Cooper, J., Cooper, J.M., 

Dickie, I., Fitch, A., Gooday, R., Hollaway, M., Holman, I.P., Jones, L., Matthews, R., Mondain-Monval, T., Norris, 
D.A., Sandars, D., Seaton, F., Siriwardena, G.M., Smart, S.M., Thomas, A.R.C., Trembath, P., Vieno, M., West, 
B., Williams, A.G., Whittaker, F., Bell, C. (2022). Environment and Rural Affairs Monitoring & Modelling 
Programme (ERAMMP). ERAMMP Report-60: ERAMMP Integrated Modelling Platform (IMP) Land Use 
Scenarios. Report to Welsh Government (Contract C210/2016/2017)(UK Centre for Ecology & Hydrology 
Projects 06297 & 06810) 
www.erammp.wales/60 

http://www.erammp.wales/
http://www.erammp.cymru/
http://www.erammp.wales/60
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of-chain models (green boxes) the spatialised information from the top-of-chain models 

(yellow boxes); including Decision-Making Unit (DMU) level land use, associated with the 

final farm outcome selected by the LAM. The bottom-of-chain models use this data to 

produce outputs associated with public goods, ecosystem services and their value. 

 

  

Figure 1.1: An overview of the linked models within the ERAMMP Integrated Modelling Platform and 
the types of data that are passed between them. 

 

1.2 Quality Assurance – what is it and why does it matter? 

Understanding the strengths, weaknesses, opportunities, and limits of any modelling system 

is vital so users of the model understand what is and is not possible to infer from the outputs. 
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QA provides the critical reflection needed to understand these limits. The IMP is designated 

as business critical and is one source of information used to support decision-making in 

policy, as such, this QA is mandated by the UK Government’s Review of quality assurance 

of government analytical models (HM Treasury: United Kingdom, 2013) and the Aqua Book 

(HM Treasury: United Kingdom, 2015).  

The Aqua book sets out the four principles of analytical QA to support the delivery of fit-for-

purpose analysis: 

• Proportionality of response: The extent of the analytical quality assurance effort 

should be proportionate in response to the risks associated with the intended use of 

the analysis.  

• Assurance throughout development: Quality assurance considerations should be 

considered throughout the life cycle of the analysis and not just at the end.  

• Analysis with RIGOUR: Quality analysis needs to be Repeatable, Independent, 

Grounded in reality, Objective, have understood and managed Uncertainty, and the 

results should address the initial question Robustly.  

• Verification and validation: Analytical quality assurance is more than checking that 

the analysis is error-free and satisfies its specification (verification). It must also 

include checks that the analysis is fit for the purpose for which it is being used 

(validation). 

As described in Section 1.1, the IMP comprises a series of linked models with data flows 

representing real-world interdependencies. The range and complexity of the models means 

there is no single QA activity. Instead, QA has been delivered through a range of activities, 

with each adding to the overall level of QA. Each component of the IMP has undergone QA 

led by an expert modelling team, full details of the model QA can be found in Chapters 3 - 

14. Briefly, these approaches include:  

• Version control: the management of different versions of inputs, outputs, and 

models.  

• Verification: the process through which the model is reviewed to ensure it is error 

free and meets specification.  

• Documentation of assumptions: the presentation of key parameters and 

assumptions to build understanding.  

• Expert Assessment (Consortium and External): using expert knowledge within the 

consortium and externally (including a WG expert group) to assess the data, 

assumptions, methodology and outputs. 

• Validation: the process through which the model is reviewed to ensure it is fit-for-

purpose including comparison or contextualisation of baseline model runs with 

independent datasets or alternative modelling approaches. 

• Peer Review: many of the models have significant history within the academic 

literature, justifying their application within the IMP. Others follow agreed standard 

approaches used for government reporting: these are also considered fit-for-purpose.  

• Uncertainty Analysis (Sensitivity Testing): including sensitivity analysis of key 

parameters and an assessment of the implications on the results produced. This 

stage also reviews the relevance of pre-defined assumptions.  
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• Building understanding: presentation of baseline results to aid interpretation of 

other scenarios. Often including supporting expert interpretation. 

1.3 How to use this document? 

Chapter 2 provides an overview of the QA approaches that have been applied to the IMP. 

The remainder of this document is divided into sections focussing on each of the individual 

components of the IMP (Chapters 3 - 14). Within each section, QA approaches are detailed 

to allow the WG expert group and the ERAMMP modelling team to have confidence in their 

understanding of the limits of the modelling results. Each chapter addresses a different part 

of the model chain and the modelling teams involved have taken approaches most 

appropriate to their model.  

This document should be read in conjunction with the IMP Assumptions Document (Annex 

1), which sets out the key assumptions as agreed with WG both across the modelling 

framework as a whole and within each individual model.  

Where possible, each model has been validated against a baseline scenario to ensure the 

model is fit-for-purpose and grounded-in-reality. For this purpose, a ‘baseline’ scenario was 

developed to represent something close to current conditions. It is parameterised as a 

farming system with CAP Pillar 1 Basic Payments and cost-neutral Pillar 2 additional 

payments. Where possible, 2015 is the year used for the data to match with the Land Cover 

Map 2015 data used to parameterise the modelling. The full parameterisation of the IMP 

baseline is detailed in the Annex 1 Assumptions Document (particularly assumptions 5-12).  
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2 Summary of the IMP QA 

2.1 Development of the IMP 

Due to its designation as business critical, the complexity of the modelling chain and its use 

as support within policy decision-making, the IMP demands a comprehensive analytical QA 

response to satisfy the four Aqua Book principles.  

To address these principles the ERAMMP IMP was developed following the principles of co-

creation, taking an iterative approach that involved the modelling consortium and 

Government experts throughout. The principles of RIGOUR were strictly adhered to with all 

assumptions underlying the modelling approach agreed, transparently documented and 

signed-off by a Senior Responsible Officer (SRO) within WG following a multi-stage iterative 

discussion between modellers and end users. This framework, as illustrated by Figure 2.1, 

addresses both proportionality to response and assurance throughout development. 

The co-creation approaches started with an agreement over the set of models and datasets 

to be included in the modelling platform. For a model to be included in the platform it had to 

conform as best as possible to the following selection criteria. The model had to be:  

1. Well-tested in previous research and policy applications;  

2. Appropriate for multi-scale spatially-explicit policy assessment studies;  

3. Able to produce a wide range of policy-relevant outputs;  

4. Responsive to a wide range of environmental, policy and market drivers;  

5. Capable of using readily available public data as inputs;  

6. Able to enable quantification of uncertainties for the estimations;  

7. Suitable for integration, in that points of contact exist between the models; and  

8. Easily adapted allowing implementation within the proposed time frame.  

9. Datasets were selected by a joint WG-modelling team working group to ensure that 

the best available and most recent datasets were utilised.  

Early interactions between the modelling team and WG also focused on the types of policy 

questions that were expected to be asked of the modelling platform. These included the 

exploration of the impacts of different interventions aligned to WG policy objectives (such as 

payments to farmers associated with a new sustainable farming scheme) and external 

drivers (such as changes in commodity prices due to new trading relationships) on Welsh 

agricultural, land use and ecosystem service outcomes. These were used to co-develop a 

detailed specification describing the individual system components, linkages (i.e. which 

outputs from which models will form inputs to other models), how they respond to different 

drivers (including policy drivers), and the spatial and temporal scale of simulation. 
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Figure 2.1 Schematic showing the design, build, test and review stages of the IMP development  

 

2.2 Overview of model QA 

To assure quality throughout, each individual model has undergone QA led by an expert 

team. Full details of each component QA are detailed in Chapters Error! Reference source 

not found. - Error! Reference source not found.. This Chapter provides an overview of 

the QA processes undertaken in each model (Table 2.1). Each model was subject to version 

control, analyst self-check, internal verification, assumptions documentation and internal 

peer review.  
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Table 2.1 QA processes by model 
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SFARMOD agricultural model 
     PR 

 

ESC-CARBINE-NPV forestry 
models 

     PR 
 

Land Allocation Module 
     

 
 

BTO bird models 
     PR  

MultiMOVE plant model 
     PR 

 

Habitat Connectivity 
    

   

Farmscoper emissions model 
     PR 

 

Water Quality 
     Partial 

 

Air Quality 
     PR 

 

Carbon  
     SA 

 

Valuation 
     SA 

 

Version control: 

The IMP uses a soft model coupling approach that moves away from hard-wired integrated 

models to provide a customisable modelling framework that can adapt to changing WG 

needs. This soft-coupling approach is key to the flexible integration, as ‘people’ (academics 

and WG working in partnership) are the enablers of fast model adjustment to evolving WG 

business critical policy questions. However, this approach requires a strict approach to QA 

and data management to ensure correct application and consistency across the IMP.  

Each data pass in the IMP is representative of a real-world interdependency and as such, 

any iteration in the ‘upstream’ models must be cascaded correctly through the chain. This 

was facilitated by the generation of Unique Identifiers, or ERAMMP Unique Identifiers 

(EUIDs). An EUID was assigned to each model, input and output which facilitates traceable 

data flow to ensure version control, verification, and repeatability. A copy of the EUID 

database is available to WG and can be accessed by contacting the UKCEH IMP team. 



Environment and Rural Affairs Monitoring & Modelling Programme (ERAMMP) ERAMMP Report-60TA2 

ERAMMP Technical Annex-2 Report-60TA2: IMP Land Use Scenarios QA v.1.0.0 Page 9 of 105 

Verification: 

Verification is the process by which modellers check and understand that their model is 

functioning as expected. It has been carried out on all models with processes and checks 

tailored to each model. Examples include checking code for errors, setting checks to catch 

common errors in code or modelling teams using their own expert judgement to assess their 

model’s performance is within expected parameters.  

Assumptions documentation:  

For transparency and repetition, all model assumptions are documented in the 

Assumptions Document (Annex 1). All assumptions have been reviewed, tested, and signed-

off by the WG Senior Responsible Officer (SRO). The assumptions documented reflect the 

final agreements of a considerable period of iteration between the consortium modelling 

teams and a range of experts within Welsh Government. This applies to all models within the 

modelling chain and across the modelling framework (e.g. the choice of 1 FTE cut-off). The 

iterative process to explicitly define and test model assumptions increases the robustness of 

analysis by presenting the results in the context of residual uncertainty and limitations to 

ensure it is used appropriately.  

The assumptions document has been made available to WG. 

Expert assessment:  

Each model underwent expert assessment (consortium and external) to independently check 

model verification, validation, and any implications on linked models. This addresses the 

principle of independence by involving a range of perspectives across the modelling team 

and WG. Whilst there are limits to which bias can be constrained, this document and the 

assumptions document are efforts to be transparent so that any biases can be addressed if 

and when they are raised.  

Throughout the IMP development, results were shared with WG, supported by expert 

assessment and documentation. This provided opportunities for challenge by the end user 

and increased the robustness of analysis and subsequent decision-making.  

Peer review and standard approaches: 

The modelling chain uses both academic peer review and agreed, standard approaches 

used for government reporting, which addresses to some extent, model choice uncertainty.  

Academic peer review of models is an important step in the assessment of model’s fitness-

for-purpose. Most models within the ERAMMP IMP chain have a significant history of 

application within academic literature for addressing similar questions to those they are used 

for in ERAMMP. A review of supporting literature for each model is provided in subsequent 

chapters. Where a model has been specifically developed for use in the ERAMMP IMP (e.g. 

LAM), addition checks, expert assessment and where possible, validation and sensitivity 

testing were undertaken.  

In other cases, (e.g. Water Quality) the coefficients are derived from a peer-reviewed model 

(FARMSCOPER) and combined with the outputs of another peer-reviewed model 

(SFARMOD); to provide extra confidence the combined outputs are also independently 

evaluated. 
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The carbon accounting and ecosystem service valuation modelling components of the 

ERAMMP IMP use standard approaches used for government accounting. The carbon 

accounting follows LULUCF carbon accounting procedures, whilst the valuation of 

ecosystem services follows Treasury Green Book guidance on appraisal and evaluation. 

Validation:  

Due to the complexity of the modelling chain, the IMP was validated by assessing the results 

of each model element. All models were validated where possible, although the specific 

approach taken varies depending on the model and the available data. A baseline scenario 

was generated for this purpose. Full model validation was not always possible, either due to 

the methods employed or lack of available data. In these cases, thorough sense checks 

were undertaken. Validation addresses uncertainty and attempts to challenge the 

perceptions of both the WG and the IMP consortium by making connections between the 

analysis and its real-world consequences. In doing so, it ensures the context of the problem 

is properly grasped and the analysis is grounded-in-reality.  

Sensitivity testing: 

Sensitivity testing is used to address uncertainty about key parameters. Where there is 

significant dependency on an uncertain assumption, effort has been made to control and 

communicate the implications of that uncertainty. This is particularly the case for the newly 

developed LAM. The LAM recognises that there are complex human and financial factors 

that affect changes to farm type. It is not possible to model these complex relationships, 

which are instead reflected by co-developed rules and Farm Business Income (FBI) 

thresholds. Downstream models are heavily reliant on the outcome of the LAM and as such, 

sensitivity testing was carried out on key parameters including, the minimum simulated FBI 

required to continue full-time farming. This provided opportunities to challenge assumptions 

and understand their implications.  
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3 Farmland – SFARMOD 

Authors: Daniel Sandars and Ian Holman 

3.1 Introduction to the model QA 

This section introduces the Silsoe Whole Farm Model (SFARMOD) and quality assurance 

steps taken to understand it. SFARMOD is the on-farm agricultural model that assesses, for 

each >1FTE farm in Wales, how profitable a range of farm types would be. The model is 

briefly introduced below (Section 3.2) and four sections illustrate efforts to improve 

confidence with, and understanding of, the model and its outputs: 

• Peer Review: Documenting previous studies published in the peer review literature 

which detail how SFARMOD has been applied and validated (Section 3.2.1); 

• Validation: Comparison of SFARMOD’s broad land use assignments for the Baseline 

Scenario against Land Cover Map 2015 and June Agricultural Census (Section 

3.2.2); 

• Validation: Comparison of SFARMOD’s cropping and grassland output for the 

Baseline Scenario with the June Agricultural Survey data (Section 3.2.3); 

• Validation: Comparison of SFARMOD’s stock numbers for the Baseline Scenario with 

Welsh June Agricultural Census (Section 3.2.4). 

3.2 Introduction to the model  

The Silsoe Whole Farm Model (SFARMOD) (Annetts and Audsley, 2002) is a constrained 

optimising strategic farm planning model based on profit maximisation, solved by linear 

Programming (LP). It has been extensively applied across a range of farm types and scales 

(e.g. Hutchings et al., 2018; Holman et al., 2018).  SFARMOD finds the optimum stocking, 

cropping, manure usage, fixed costs, labour and profit for given land quality, climate and a 

selection of available resources, constraints, costs and revenues. For the livestock farms 

that dominate in Wales, it provides an economic optimum farm management that ensures 

that the feed and bedding demand of the optimised livestock numbers through the year can 

be met by a farm-specific combination of on-farm feed production and bought-in 

concentrates. 

The nutritional demands of livestock are represented by fortnightly demands for 

metabolisable energy, crude protein and dry matter intake, along with bedding demands to 

meet welfare needs, which must be met within acceptable tolerances. Within their grazing 

seasons, suitable stock are all fed grazed grass (based on disaggregated yield using Qi et 

al., 2018), with supplements, mainly for dairy cows. The model chooses the least cost ration 

(considering grass silage, a self-fed forage crop (roots), whole crop silage, maize silage, 

straw and concentrates), so that grass use is normally maximised.  Input data are derived 

from Nix, ABC, Welsh Farm Business Survey and British Survey of Fertiliser Practice. 

Due to data constraints, we use representative ERAMMP Robust Farm Types (e.g. general 

cropping, lowland cattle and sheep, dairy) to define a set of realistic farming systems per 

Decision-Making Unit (DMU) to solve with SFARMOD. Each full-time Welsh farm is therefore 

modelled as a set of DMUs based on farm-specific discretised (banded) soil, rainfall, slope, 

altitude and recent farm type and land cover. Each DMU is optimised independently and 
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then additively combined to obtain the solution for the farm. Within scenario runs, an 

optimised solution is derived for all feasible farm types for each farm. 

3.2.1 Peer Review: SFARMOD 

The details of the original SFARMOD model, its application and validation can be found in 

Annetts and Audsley (2002). Since then SFARMOD has been applied across a wide range 

of contexts and scales (e.g. regional - Holman et al., 2005, Audsley et al., 2008; national – 

Holman et al., 2016; Papadimitriou et al., 2019a; continental - Audsley et al., 2014; Harrison 

et al., 2019; Papadimitriou et al., 2019b; Lee et al., 2019), including inter-model comparison 

(Hutchings et al., 2018), sensitivity (Fronzek et al., 2019; Kebee et al., 2015) and uncertainty 

analyses (Brown et al., 2015; Dunford et al., 2015). 

3.2.1 Validation: Comparison of broad land use classes between SFARMOD, Land 

Cover Map 2015 and June Agricultural Census 

The June Agricultural Census/Survey (JAS) of Agriculture and Horticulture is a survey of 

agricultural activity in Wales and the rest of the UK. It is performed annually as a stratified 

sample of farms across Wales, with higher (100%) sampling rate in “large” and “very large” 

farms. For reference, the total sample was 11,069 farms in 2019. As a primary source of 

information about how Welsh farms are managed the JAS is a useful benchmark comparator 

for SFARMOD modelling results.  

Note: to allow a direct comparison with SFARMOD outputs the JAS data was first scaled to 

remove farms of <1FTE (Full Time Equivalent). As the JAS results suggest that there are 

8561 farms that are >1FTE, compared to the 7726 farms > 1FTE in the IMP, the JAS results 

were further scaled to represent the equivalent number of farms to the IMP (see Appendix 

A).   

To provide spatially-explicit insights into each farm’s farming systems, SFARMOD used 

DMUs that incorporate simplified land use classes based on amalgamation of Land Cover 

Map 2015 (LCM2015) target classes. These simplified classes represent arable (based on 

the LCM2015 class of “arable and horticulture”), semi- or improved grassland (aggregation 

of “improved grassland”, “neutral grassland” and “calcareous grassland”) and unimproved 

grassland / rough grazing (aggregation of “acid grassland”, “fen, marsh and swamp”, 

“heather”, “heather grassland” and “bog”) to inform its selection of appropriate farming 

systems. 

The comparative evaluation of land use between JAS 2015-16, LCM2015 and the 

SFARMOD simulated baseline scenario is shown in Table 3.1. In terms of total farmed area, 

the process of rescaling the JAS to remove <1FTE farms and to re-scale to the same farm 

number is close. However, there is a discrepancy between the grassland types, with the JAS 

estimating a smaller area of rough grazing and a greater area of semi-improved/improved 

grassland areas (given by the categories of temporary or permanent grassland) than the 

LCM2015 and the SFARMOD baseline. Nevertheless, despite these uncertainties arising 

from different data sources and different grassland classifications, there is a good overall 

match between these datasets and the broad land use outcomes from the SFARMOD 

solutions. 
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Table 3.1 Comparison of broad land use in >1FTE farms (7726) according to Land Cover Map 2015, 
JAS and SFARMOD baseline 

Source Arable (ha) Semi- or 
improved 
grassland (ha) 

Unimproved 
grassland /Rough 
grazing (ha) 

Total farmed 
area (ha) 

LCM2015 63,353 613,120 248,246 924,720 

JAS (2015-16) [scaled] 66,460 669,212 176,581 912,254 

SFARMOD baseline 65,859 610,427 248,431 924,717 

 

3.2.2 Validation: Comparison of SFARMOD cropping and grassland output with the 

June Agricultural Survey data 

Table 3.2 shows a comparison between the re-scaled JAS estimates and the different crops 

and grassland types simulated by SFARMOD. The JAS and SFARMOD total crop areas 

(flagged in green on the table) are very similar (given the inevitable uncertainties in the JAS 

scalars), although there are differences between individual crops and between the total 

areas of arable and break crops. Part of the difference is due to a reduced set of crops within 

SFARMOD to manage computability; this means that some crops in the JAS are 

unrepresented in SFARMOD (e.g. oats, peas and beans), whilst stubble turnips and whole 

crop silage are used by SFARMOD to represent the diversity of crops included within the 

broad JAS category of “stockfeed”. It is also apparent that there is some interplay between 

crops in the SFARMOD solutions with overestimated areas of spring cropping maize and 

stock feed crops (+9527 ha) being largely balanced by underestimated areas of spring 

barley and oats (-8879 ha). 

The break crops within a rotation are opportunistic by nature and their inclusion in a rotation 

is sensitive to a balance of many cultural and financial factors such as rotational benefits, 

local markets, and timeliness of demands on the machinery and workforce. Consequently, 

given that arable crops represent only 6.5% of Welsh farmland, SFARMOD has produced a 

good overall representation of arable farming in Wales.  

With the grassland systems, SFARMOD has an apparent bias towards temporary grass 

compared to permanent grass, which is defined by a point in a distribution of ley lengths/ 

reseeding intervals. The apparent over-estimation of rough grazing by SFARMOD compared 

to the JAS refers to the differences between JAS and LCM2015 described in the earlier 

section. The effect of more temporary grass is to see more forage crops in rotation and 

higher grass yields. The practical effect is to increase the possible stocking and inputs. The 

effect of more rough grazing is the opposite.  
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Table 3.2 Validation of ERAMMP crop and grassland types against June Agricultural Census 2015-16 

 

Welsh June 
Agricultural 
Census Survey 
2015-16 

Scaling to 
remove < 1FTE 
farms 

Adjusted 
Cropping 

Modelled 
BASELINE  

Wheat     21,835  77% 16,819 14,702  

Winter barley        6,926  77% 5,335            7,387  

Spring barley     15,136  77% 11,659            6,795  

Oats        5,212  77% 4,015 - 

Other cereals           654  77% 504 - 

Total Cereals 49,763    38,332          28,883  

Potatoes (early)          919  77% 708  1,318  

Potatoes (main)      1,927  77% 1,484  63  

Maize    10,003  77% 7,705  13,563  

Stockfeed    14,761  77% 11,370  15,039  

Field peas & beans           849  77% 654 - 

Oilseed rape      4,812  77% 3,707  6,993  

Other crops       2,570  77% 1,980 - 

Bare fallow           675  77% 520 - 

Total break crops 36,516    28,128          36,976  

Total arable crops and 
bare fallow 

86,279    66,460          65,862  

New grass   125,692  76% 95,473  142,724  

Permanent grass   876,173  65% 573,738  467,703  

Sole rights rough grazing   222,075  80% 176,581  248,431  

Total Grass 1,223,940    845,793  858,858  

Total Cereals, break 
crops, and grass 

1,310,219    912,254 924,720  

  

3.2.3 Validation: Comparison of SFARMOD baseline stock numbers with Welsh 

June Agricultural Census 

Grazing Livestock Units (GLU) have been used to provide an approximate basis of 

comparison for stock numbers. This allows the breeding and finishing stock of various ages 

to be combined to a single figure for dairy, beef, cattle, and sheep to inform feed 

requirements and stocking rates.  

The standard GLU constants from the Nix Farm pocketbook were re-estimated for Welsh 

sheep and beef to take account of the large numbers of light breeds of sheep that uniquely 

characterise the traditional breeds in the mountains of Wales. Welsh sheep are distributed 

40% hill, 47% upland and 13% lowland and these have standard grazing livestock unit 
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estimates of 0.06, 0.07 and 0.08, respectively (Anthony pers. comm. 2022). Table 3.3 shows 

the results of these calculations. 

Table 3.3 Calculation of Grazing Livestock Units based populations of dairy, beef and sheep from the 
Welsh JAS 

 
Welsh June 
Agricultural Census 
Survey 2015-16 

Welsh GLU 
factor 

Grazing 
Livestock Units 

Male cattle <1year 137,637 0.34 46,797 

Beef females <1 106,393 0.34 36,174 

Male 1-2 94,252 0.65 61,264 

Beef females1-2 83,166 0.65 54,058 

Male 2+years 40,591 0.65 26,384 

Beef f 2+ not calved 41,894 0.75 31,421 

Beef f 2+ calved 166,692 0.75 125,019 

Total Beef GLU  381,116 

    

Dairy female <1 77,864 0.34 26,474 

Dairy 1-2 70,039 0.80 56,031 

Dairy 2+ not calved 54,120 0.80 43,296 

Dairy 2+ calved 246,331 1.00 246,331 

Total Dairy GLU  372,132 

Total cattle 1,118,979   

    

Breeding ewes 3,661,555 0.070 256,309 

Ewes for cull 311,372 0.070 21,796 

Ewes for first time breeding 769,974 0.053 40,424 

Rams 107,167 0.070 7,502 

Other sheep (female) 48,354 0.070 3,385 

Other sheep (male) 29,500 0.070 2,065 

Lambs 4,576,055 0.035 160,162 

Total sheep 9,503,977   

Total sheep GLU  491,642 
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Table 3.4 shows that there is a generally good match between the SFARMOD baseline and 

the re-scaled JAS total GLUs, with a difference of less than 3.5%. There is a slight model 

under-estimation of beef GLUs and over-estimate of dairy GLUs. The apparent under-

estimation of sheep numbers (and to a lesser extent beef GLUs) probably reflects three main 

issues. Firstly, the metabolic feed requirement from rough grazing is simulated using the 

grass yield model of Qi et al. (2017), but there is considerable uncertainty in the Qi model 

outputs due to a lack of yield data from rough grazing systems. Secondly, SFARMOD 

implicitly assumes good agronomic practice so that over-stocking land is prevented by both 

feed limitations and soil condition. Thirdly, SFARMOD makes a rationale economic decision 

regarding the use of supplementary feeds to augment the metabolic feed production of 

rough grazing, which may reduce stocking rates relative to local practice. 

Table 3.4 Comparative evaluation of SFARMOD baseline stocking numbers with Welsh June 
Agricultural Census 

Stocking 
Welsh June Agricultural 
Census Survey 2015-16 

Scaling to remove 
<1FTE farms 

Adjusted 
livestock 

Modelled 
baseline 

Total Beef 
GLU 

381,116 71% 270,592 249,031 

Total Dairy 
GLU 

372,132 89% 331,197 362,720 

Total Sheep 
GLU 

491,642 83% 408,062 362,917 

Total GLU 1,009,851 974,668 
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4 Forest suitability, carbon balance & economics - ESC-

CARBINE-NPV  

Authors: Kate Beauchamp, Robert Matthews and Vadim Saraev 

4.1 Introduction to the model QA 

This section introduces the tree species suitability model (Ecological Site Classification, 

ESC), the forest sector carbon accounting model (CARBINE), the forest economic 

calculations of Net Present Value (NPV), the processing model linking woodland data across 

scales (GLUE) and the quality assurance steps taken to understand them. The models are 

outlined in more detail in Section 4.2 and section 4.2.1 to 4.2.8 describe the quality 

assurance steps taken: 

• Validation/ Contextualisation: The ESC model has been validated through peer 

review, survey data, and long-term practitioner testing. ESC outputs have been 

compared to published values and model runs from published reports.    

• Validation/ Contextualisation: CARBINE outputs have been compared to published 

values, articles and model runs from published reports. 

• Presentation/ Interpretation: Baseline results for all models have been outlined in 

their respective sections; all values have been checked by Forest Research experts. 

4.2 Introduction to the modelling 

ESC: The Ecological Site Classification model (ESC; Pyatt et al. 2001) assesses tree 

species suitability (0-1) and forest productivity (Yield Class, m3ha-1yr-1) for a given site 

based on six climatic and soil variables (accumulated temperature, moisture deficit, 

continentality, windiness, soil moisture regime and soil nutrient regime). This model is used 

within the IMP chain to identify the most suitable species to plant given different priorities for 

forest management. It is also used to guide where climax vegetation is likely to be trees (if 

suitability is sufficient) or short scrub (if suitability is low) following land abandonment.  

ESC was implemented as an R script at a 250m resolution grid across Wales for eleven key 

tree species, using CHESS climate variables for the baseline period (1981-2000) to derive 

accumulated temperature (day degrees greater than 5 degrees centigrade) and moisture 

deficit (the balance between evaporation and precipitation in the growing season (April to 

September)). Continentality (seasonal variability of the climate, CONRAD Index, follows 

Birse (1971) and Bendelow and Hartnup (1980)) and windiness (DAMS, detailed aspect 

method of scoring, Quine and White (1993, 1994)) scores were used. Soil Moisture Regime 

and Soil Nutrient Regime were derived from the dominant soil properties type as identified in 

the Cranfield dataset (1:250,000).  

For each of three forest types the highest yielding species (conifers and short rotation 

forestry, SRF) or most ecologically suitable species (broadleaf) was used to represent that 

forest type for each cell: productive conifers (Sitka spruce (Picea sitchensis), Douglas fir 

(Pseudotsuga menziesii), Scots pine (Pinus sylvestris)); native broadleaves (oak (Quercus 

petraea, Quercus robur), beech (Fagus sylvatica), aspen (Populus tremula), birch (Betula 

pendula, Betula pubescens); short rotation forestry (Sitka spruce (Picea sitchensis), red 

alder (Alnus rubra), poplar (Populus nigra)).  
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Using these three forest types, five forest management-types were simulated: productive 

conifers (thin-fell & Low Impact Silvicultural Systems (LISS); native broadleaves (LISS & no-

thin-no-fell); Short Rotation Forestry (SRF – a 25-year rotation).  

The IMP chain integrates the CARBINE model with ESC, to calculate carbon storage in 

woodland and wood-related products. Tree species, management, yield class, climate zone, 

soil class and previous land use were used to lookup the carbon and greenhouse gas (GHG) 

balances of the forestry systems as calculated by the CARBINE model.  

CARBINE: The CARBINE forest sector carbon accounting model calculates the 

development of carbon stocks over time in all key woodland carbon pools (trees, deadwood, 

litter, soil); the production of wood over time, representing key raw product types (sawlogs, 

small roundwood and bark), GHG emissions from fuels, materials and machinery involved in 

creating and managing the woodlands (Matthews et al., 2021a,b). Carbon and GHG 

assessments were made for each of the five forest management types, for each 250m grid 

location and for three time horizons (2020-2025, 2026-2050 and 2051-2100).  

For ERAMMP, this model has been extended by the addition of a module for the calculation 

of the Net Present Value (NPV) of forestry in a way that is comparable with the NPV values 

calculated in an agricultural context. 

Economic NPV: Forest economic values were calculated using costs for establishment, 

management, and harvesting, per hectare, based on a central estimate of 2015 data. 

Harvested timber product volumes from CARBINE and product values from 2015 were used 

to calculate revenue (Saraev, 2017a,b). NPV were calculated according to Green Book 

methods using Green Book discount rates (HM Treasury, 2018) annualised over the length 

of the rotation.  

Linking woodland data across scales (GLUE): ESC-CARBINE-NPV data are all run at a 

250m resolution. Additional code was developed to average the woodland data to the sub-

farm resolution of Decision-Making Units (DMU) used by other models. 

4.2.1 Peer Review: ESC & CARBINE 

The ESC model was developed by Forest Research to assess tree species suitability for 

sites across the UK (Pyatt et al. 2001) and has been developed to incorporate climate 

change projections to explore the impacts of future climate on tree species suitability 

(Broadmeadow et al., 2009; Ray, 2008a, 2008b; Ray et al., 2010). The ESC model has been 

used to research tree health impacts on UK woodland composition and species alternatives 

(Broome et al., 2018; Ray et al., 2021) and to explore how changes in forest management 

and climate change will impact the provision of ecosystem services, to support regional and 

national policy development (Beauchamp et al., 2016; Ray et al., 2015; Ray et al., 2019). 

The ESC decision support tool was developed to support practitioner decision-making and is 

used widely across the forestry sector by the Forestry Commission and private managers to 

support planning. Research engagement with practitioners and surveys of established 

stands allows feedback into model validation and refinement. The ESC model and outputs 

have therefore been extensively peer-reviewed and validated on the ground.  

The CARBINE model has been applied in national greenhouse gas inventories under the 

United Nations Framework Convention on Climate Change (Brown et al., 2021) and forms 

the basis of the UK’s GHG emissions and removals due to afforestation, deforestation, and 

forest management under the Kyoto Protocol (Thomson et al., 2020). Values also underpin 

the UK Woodland Carbon Code (Jenkins et al., 2018; UKWCC, 2020, 2021). Model values 
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have been extensively validated through literature review and national and international 

assessment, since the model was first produced in 1988 (Thompson & Matthews, 1989). 

Mensuration values have been extensively validated through field assessments and 

publication (Matthews et al., 2016). 

Economic models of forest management have been validated through publication and peer 

review (Saraev 2017a, b). Net Present Value was calculated according to Green Book 

guidelines (HM Treasury 2018). Methods are consistent with published approaches (e.g. 

Hardaker, 2018). References to further papers are included in the forestry section of the 

reference list at the end of this report. 

4.2.2 Building Understanding: Understanding the baseline distribution of the highest 

yielding species across Wales from ESC outputs. 

Figure 4.1 shows which species is the highest yielding for each forest type, under the 

baseline climate. This represents the most likely species that would be planted by a 

landowner for each forest management type, and so is indicative of the forest type. 

 

Figure 4.1 The most productive (highest yielding) tree species, as assessed by ESC for the baseline 
climate period, is selected at 250m resolution for each of the three forest types. 

The take-home-messages are that:  

• For productive conifers: Sitka spruce is selected as the highest yielding species 

across most of Wales, with Scots pine selected in drier locations and Douglas fir in 

eastern locations on rich soils. 

• For native broadleaves: Aspen is selected in lowland areas and beech at higher 

elevations with scattered areas of birch. Oak is not selected in this scenario as it has 

a lower yield class. 
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• For short rotation forestry: Sitka spruce is widely selected as the highest yielding 

species with only very small patches of poplar or red alder. 

4.2.3 Building Understanding: Understanding the distribution of ESC suitability 

scores for each forest type 

The ESC suitability score identifies how suitable a given tree species is for a site, on a scale 

from 0 to 1, with <0.3 unsuitable, 0.3 – 0.5 marginal, 0.5 – 0.75 suitable, and 0.75 – 1 as 

very suitable. Sites are only modelled as suitable for broadleaf woodland if the suitability 

score is greater than 0.3 (marginal, suitable or very suitable), and for productive conifers if 

greater than 0.5 (suitable or very suitable).  

Figure 4.2 shows modelled suitability is highest in lowland areas. Suitability for all forest 

types decreases as elevation and windiness increase and as temperatures decrease. Soil 

and rainfall also affect suitability. Average suitability is similar across all forest types (0.70 – 

0.83 Table 4.1 ; equivalent to ‘suitable’ in ESC).  

   

Conifer Broadleaf Short Rotation Forestry 

◼ 0 | ◼ 0.0-0.3 | ◼ 0.3-0.5 | ◼ 0.5-0.75 | ◼ 0.75-1 

Figure 4.2 Ecological tree species suitability for the selected tree species (see Figure 4.1 ) for each of 
the three forest types, for the baseline climate period, no climate change (ESC score 0 unsuitable to 1 
very suitable) 

 

Table 4.1 Statistical overview of ESC suitability value and yield class by forest type 

 
Suitability Yield Class 

Mean Median Mean Median 

Broadleaf 0.79 0.83 8.1 8 

Conifer 0.72 0.75 20.0 21 

Short Rotation Forestry 0.70 0.72 19.6 21 
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4.2.4 Building Understanding: Understanding levels of baseline productivity (yield 

class and wood production) from ESC 

Forest productivity (growth) is measured as the yield class (m3ha-1yr-1), which in the 

models is calculated as the product of the maximum potential yield class and the ESC 

suitability score for each species. As with suitability, modelled yield class is highest in 

lowland areas and decreases with increasing elevation and windiness and decreasing 

temperatures for all forest types (Figure 4.3). Modelled yield class is highest for productive 

conifers and SRF (means of 20 and 19.6, respectively) than for broadleaves (mean yield 

class 8.1) as conifers have a higher yield class than broadleaves, even where suitability 

scores are the same or higher; and in particular due to the prevalence of Sitka spruce which 

is high yielding. 

   

Conifer Broadleaf Short Rotation Forestry 

◼ 0-1 | ◼ 1-4 | ◼ 4-8 | ◼ 8-12 | ◼ 12-16 | ◼ 16-20 | ◼ 20-24 

Figure 4.3 Forest productivity; the highest potential yield class for each forest type. Yield class a 
measure of growth or timber production, measured in m3ha-1yr-1 

4.2.5 Building Understanding: Understanding the carbon sequestration potential of 

new woodland from CARBINE 

Potential carbon sequestration of new woodland is calculated as the sum of a) the change in 

carbon stock in trees, deadwood and litter; b) the change in carbon stock in soil; c) the 

change in carbon stock in harvested wood products; and d) the GHG emissions due to forest 

operations. Note these changes do not include any changes in carbon sequestration 

resulting from changes in climate or atmospheric composition. 

As shown in Figure 4.4, SRF management results in net emissions in lower yielding areas 

due to emissions from forest management and where the carbon in harvested wood 

products is lost when material is burned. Conifer stands managed under Low Impact 

Silvicultural Systems (LISS) have lower levels of harvesting and higher levels of carbon on-
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site per hectare than conifer stands managed under clear-fell. Likewise, unmanaged 

broadleaf stands (no-thin-no-fell) have lower levels of harvesting than those managed under 

LISS, therefore results show higher carbon sequestration per hectare. Conifer stands 

managed under LISS sequester more carbon than broadleaf LISS stands due to faster 

growth rates.  

   

Conifer (thin fell) Conifer (low intensity) Short Rotation Forestry 

 
 

 

Broadleaved (no thin fell) Broadleaved (low intensity)  

◼ -16.79 to -9.78 | ◼ -9.77 to -6.09 | ◼ -6.08 to -1.58 | ◼ -1.57 to 0 | ◼ 0.01-1.5| ◼ 1.61-
3.04 
Positive numbers are emissions / Negative are sequestration. 

Figure 4.4 Carbon sequestration (tCO2eqv/ha/yr) by forest type and management: a) conifer thin fell, 
b) conifer LISS, c) broadleaf LISS, d) broadleaf no-thin-no-fell, e) short rotation forestry). Green 
represents net sequestration, red net emissions 

4.2.6 Building Understanding: Wood production by forest type and management 

Figure 4.5 shows the average annual wood production (harvested timber) to 2100 for the 

four forest management scenarios where timber is harvested (i.e. excluding broadleaf no-

thin-no-fell). Conifer forests under a standard thinning regime and felled at the end of the 

rotation have the highest potential for wood production per hectare per year, followed by 

short rotation forestry (Figure 4.5). This is because conifer species are faster growing (higher 

yielding) and have shorter rotation lengths. Broadleaved woodlands under LISS 
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management produce the lowest volume in these scenarios. These values influence forest 

economics and NPV. There is no harvesting and no wood production in the broadleaf no-

thin-no-fell scenario (not shown). 

  

 

Figure 4.5 Modelled wood (timber) production to 2100 (m3/ha/yr) by forest type and management, for 
conifer thin fell, conifer LISS, broadleaf LISS, SRF; there is no harvesting in broadleaf no-thin-no-fell 

Table 4.2 presents the mean values of timber harvested across Wales, in cubic metres per 

hectare per year; values to 2100 are averages of those in Figure 4.5. Values to 2050 are 

lower, as less material is harvested, mainly thinning for conifer stands under LISS and thin-

fell, and broadleaf LISS stands, and SRF which goes through a single cycle (25 years). 

Conifer stands have completed one full rotation to 2100, SRF 3 cycles, and broadleaf stands 

are yet to complete a full harvesting cycle. 

Table 4.2 Mean wood production (harvested timber, m3ha-1yr ) across Wales by forest management 
type, for 2050 and 2100. 

Mean Wood production 2050 2100 

 Broadleaf LISS 3.1 4.7 

 Broadleaf no-thin-no-fell 0 0 

 Conifer LISS 6.1 10.2 

 Conifer thin fell 6.1 13.8 

 Short Rotation 11.8 13.2 

 

4.2.7 Building Understanding: Forest Economics (CARBINE-NPV) 

Figure 4.6 shows the NPV calculated for discount rates of 0 and 3.5 for different forest and 

management types. At a discount rate of 0, NPV declines from: conifer thin fell, to conifer 

LISS, to broadleaf LISS (positive NPV values); to broadleaf no-thin-no-fell and SRF 

(negative values). As discount rate increases, NPV decreases (Table 4.3). At a discount rate 

of 5, conifer forests have a positive NPV, but others are negative. NPV varies spatially in the 

same pattern as wood production, suitability and yield class (Figure 4.5, Table 4.1). 
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Figure 4.6 Net present values calculated by forest type and management, for conifer thin fell, conifer 
LISS, broadleaf LISS, SRF; there is no harvesting in broadleaf no-thin-no-fell for a discount rate of 
zero and the Green book discount rate of 3.5%. 

Table 4.3 Mean Net Present Value by forest management type for three different discounting rates 
(zero, green book (3.5%) and 5%). 

Mean NPV NPV0 NPV3.5 NPV5 

 Conifer thin fell 217.4 74.3 27.5 

 Conifer LISS 175.7 52.8 14.6 

 Broadleaf LISS 170.6 -15.8 -92.8 

 Broadleaf no-thin-no-fell -10.1 -66.2 -102.0 

 Short Rotation Forestry -283.4 -231.6 -218.8 

4.2.8 Error checking: ESC downscaling process 

The ESC-CARBINE_NPV outputs were scaled proportionately from the 250m resolution to 

the resolution of the DMUs, which is used by the downstream models. During the scaling 

process, areas ecologically unsuitable or unavailable for forestry due to planting restrictions 

are removed. Figure 4.7 outlines the scaling process. 

As a QA step the downscaled data were sense checked for common errors. For example, 

checks were conducted to ensure plantable area was less than the DMU area and ensure 

that values are within the range of minimum and maximum values. Then, from the resultant 

datacube, random DMUs were chosen and overlain in ArcGIS with the original ESC-carbine 

data for a manual comparison of the results. The sense checking and validation steps show 

that species choice, suitability scores and yield class at 250m and DMU level are all within 
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expected ranges and follow expected geographic and climatic trends. These values underpin 

the timber production volumes from the different forest management scenarios, which in turn 

underpin the values for carbon sequestration and annualised NPV; these values are also 

within expected limits and follow expected spatial trends and differences between forest and 

management type. NPV values were compared to farm economic values to confirm NPV 

value ranges were within the appropriate range.  

  

   

The ESC carbine data cube is 
converted into a spatial grid and 
intersected with the DMU 
polygons 

This creates a spatial dataset 
with multiple polygons per 
DMU. Each new polygon has 
the attributes of the ESC-
carbine-NPV datacube 

Areas with restrictions are 
deleted: peat soils, slope > 

22, SACs (buffered by 

500m), SSSIs (buffered by 
300m)  

 
  

Areas ecologically unsuitable for 
forestry are discarded; ESC 
suitability score thresholds: 
conifers >=0.5; broadleaf >=0.3  

Each remaining polygon has 
ESC-CARBINE-NPV values 
calculated for the partial 250m 
grid squares suitable for forest 

The polygons are then 
aggregated at the DMU level 
and spatial average values 
calculated 

 Figure 4.7 Overview of the scaling process used to convert ESC-CARBINE-NPV data from 250m to 
DMU resolution. 
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5 Land Allocation Module (LAM)  

Authors: Mike Hollaway and Ian Holman 

5.1 Introduction to the model QA 

The Land Allocation Model (LAM) uses the outputs of the upstream models to create the 

final allocation of land use that is passed to the downstream group of models. To improve 

understanding and confidence in the model, the following steps have been undertaken: 

• Validation/ Contextualisation: the LAM allocations for baseline were compared with 

the Newcastle Brexit Report (Section 5.2.1) and the Welsh Farm Business Survey 

(Section 5.2.2); 

• Expert Assessment (External): the assumptions underlying the LAM were given 

explicit scrutiny by the Welsh Government expert Group (Section 5.2.3); 

• Sensitivity analysis: the influence of changing key LAM parameter values was 

assessed (Section 5.2.4); 

• Expert Assessment (Consortium): expert sense-checking of LAM outputs for the land 

use scenarios (Section 5.2.5). 

5.2 Introduction to the modelling 

The LAM is a heuristic-based decision model that selects the expected long-term outcome 

for each farm (and their associated land use and livestock selections) across Wales. The 

LAM considers the optimised SFARMOD farm solutions (crop types/areas, grassland 

types/areas, stocking types/numbers, fertilisation etc) under a given scenario – these include 

the optimised solution for a holding’s current farm type (e.g. dairy), but also for all alternative 

farm types (e.g. mixed livestock, specialist sheep etc).  The LAM estimates the Farm 

Business Income (FBI) for each farm based on the SFARMOD net farm profit, allowing for 

miscellaneous non-agricultural income, unpaid labour and those fixed costs that do not 

change directly with farm plans (e.g. land ownership or tax). The latter three components not 

simulated by SFARMOD are calculated according to farm-type specific “All sizes” data from 

the Welsh Farm Business Survey. For those farm types for which there are no data in the 

Welsh Farm Business Survey (Cereals and General cropping), data from agro-climatically 

similar regions in England is used. 

The LAM recognises that there are complex human and financial factors that affect the 

likelihood of a change in farm type in response to changing economic circumstances. These 

are reflected in the rules and FBI thresholds that are used to identify farms under economic 

pressure; farms that remain in their current farm type; and farms that transition to more 

profitable alternative farm types. Farms under economic pressure fail to achieve a simulated 

FBI of less than £6000 p.a. (based on Hubbard, 2019; Hubbard et al., 2018) and either leave 

full-time agriculture, are sold and converted to an alternative farm type or are afforested, 

depending on the viability and environmental suitability of alternative farm types and forestry 

(from ESC-CARBINE). Farms remain in their current farm type if they exceed the minimum 

FBI threshold, but either fail to achieve an FBI that provides the financial resources needed 

to change farming system or if there is no sufficiently financially attractive alternative to 

incentivise transition. Farms transition to a more profitable alternative farm types if the FBI 

uplift is sufficient to both incentivise change and to meet the cost of additional borrowing 
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required to make the change (based on Welsh Farm Business Survey data and Andrew 

Moxley pers. comm). 

The LAM sits between the upstream forest and agricultural profitability models and the 

downstream ecosystem service and biodiversity modelling. The model is responsible for the 

final allocation of land use that is passed downstream to the other models. The LAM passes 

through the SFARMOD (cropping, grassland, livestock and nutrients) and ESC-CARBINE 

outputs for each baseline ERAMMP Farm Type directly to downstream models.  

5.2.1 Validation: Comparison of Welsh Farm Business Income from the LAM and 

Newcastle University Brexit Report from 2019 

The simulated distribution of FBI from the LAM was compared to that in the Newcastle University 

‘Brexit’ report (Hubbard, 2019) which was based on Farm Business Survey data and a budgetary 

simulated model (Figure 5.1).  The apparent over-estimation of baseline FBI by the LAM through the 

lower half of the distribution can be explained, at least in part, by: 

1. The LAM using SFARMOD optimised outputs that assume farmers are profit maximisers; 

2. The Newcastle report including “part-time” farmers who represented almost 9% of their 

sample. Only farms with >1FTE are included within the IMP; 

3. The different, although overlapping, baseline economic periods (2015/16 vs 2013/14-

2015/16). 

 

Figure 5.1 Comparison of estimated Welsh Farm Business Income distribution from the LAM and 
Newcastle University (2019) report. 

5.2.2 Validation: Comparison with Welsh Farm Business Survey 

Figure 5.2 provides a comparison of the median simulated FBI from the LAM (green bars) against the 

“All sizes” average FBI from the Welsh Farm Business Survey (2015/16, blue bars), with the 
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uncertainty bars providing the range in FBI across the period 2012/13 to 2017/18. Blue Welsh FBS 

bars are missing where there is no equivalent farm type reported (e.g. cereals and general cropping). 

The graphs show the high annual volatility in the actual FBI of both lowland and upland/hill dairy farms 

compared to all other farm types in the Welsh Farm Business Survey (FBS). Farm planning decisions 

are about the unknown future, so SFARMOD basis its decisions on price and yield expectations 

(rather than future actual prices) in a similar manner to the subjective expectations of farmers. Our 

expected prices are informed by historic prices going back a number of prior years using the John Nix 

and ABC pocket books. In contrast, the Welsh farm Business survey is based on a statistical sample 

of historical facts.  

Direct comparisons are impacted by several methodological uncertainties related to i) the 

actual costs incurred, and output prices received by farms throughout the year, ii) farm-

specific uncertainties in unpaid labour, miscellaneous non-agricultural income etc used by 

the LAM in reflecting all full-time farms; and iii) uncertainties within the Welsh FBS data. 

However, whilst there are inevitable mismatches between the LAM and the Welsh FBS data, 

given these uncertainties, it is encouraging to see that the LAM outputs are within the 

reported range of recent years for all farm types (Figure 5.2). 

 

Figure 5.2 Comparison of simulated median Farm Business Income from the LAM (green bars) 
against the “All sizes” average Farm Business Income from the Welsh Farm Business Survey 
(2015/16, blue bars) by farm type, with the uncertainty bars indicating the range in Farm Business 
Income across the period 2012/13 to 2017/18 

5.2.3 Expert Assessment (External) Welsh Government Expert Group consultation 

on LAM decision rules and thresholds 

LAM decision rules and key decision thresholds have been reviewed and agreed with a 

Welsh Government expert group. Given the diverse and farm-specific decision contexts 

associated with farm transition (e.g. farmer age, indebtedness, values, personal preferences 

etc), it was agreed that the LAM does not attempt to predict farm type change over a fixed 
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given time horizon; nor is it trying to predict individual farmer behaviour. The implementation 

of the rules and thresholds by scientists at UKCEH in the IMP were QA-ed by scientists at 

Cranfield University through examination of LAM output. 

5.2.4 Sensitivity analysis: Key LAM parameters assessed through sensitivity 

analysis 

Sensitivity analysis of the LAM was performed on the No Basic Payment Scheme (NoBPS) 

runs of SFARMOD. Three settings influence potential change in the farm type in the LAM: 

1. The minimum annual FBI required to continue full-time farming:   

• This was agreed at a low value of £6,000 p.a. to represent the tenacity of 

many farmers to keep farming. 

2. A minimum annual FBI for a farm to be performing at a level to contemplate transition 

was agreed as the national minimum wage for 1 FTE (~£13,000 p.a.). 

3. The required increase in annual FBI to make farm type transition sufficiently 

attractive. This has two components: 

• An agreed minimum FBI uplift required to motivate transition of £5,000 p.a. or 

25% of the baseline farm type’s FBI; 

• An agreed additional annual FBI uplift to finance any increased tenants’ 

capital requirement for farm type transition as 10% of increased tenants’ 

capital requirement. 

The LAM sensitivity analysis explored how changing these critical thresholds or percentages 

affected the outcome of ERAMMP Farm Type (EFT) changes across seven bundles of LAM 

settings, in which the agreed LAM thresholds were modified by up to +/- 50%. These seven 

bundles, in which between one and three LAM thresholds were modified in each run, were 

chosen to make deliberate EFT change more or less difficult and enforced EFT change more 

or less likely. These analyses (labelled Default and 2-7) are described below: 

1. Default values; 

2. Making deliberate EFT change more difficult – increased minimum FBI to 

contemplate transition from £13,000 to £19,500; increase tenants capital multiplier 

from 0.1 to 0.15 and change minimum FBI uplift to greater of £10,000 or 25%; 

3. Making deliberate EFT change slightly more difficult – increased minimum FBI to 

contemplate transition from £13,000 to £16,000; keep tenants capital multiplier to 0.1 

and change minimum FBI uplift to greater of £7,500 or 25%; 

4. Making enforced change more unlikely – reduce minimum FBI viability threshold from 

£6,000 to £3,000; 

5. Making enforced change more likely - increase minimum FBI viability threshold from 

£6,000 to £9,000; 

6. Making deliberate EFT change slightly more likely - reduce minimum FBI to 

contemplate transition from £13,000 to £10,000; decrease tenants capital multiplier 

from 0.1 to 0.05 and keep minimum FBI uplift to greater of £5,000 or 25%; 

7. Making deliberate EFT change more likely - reduce minimum FBI to contemplate 

transition from £13,000 to £8,000; decrease tenants capital multiplier from 0.1 to 0.05 

and change minimum FBI uplift to greater of £5,000 or 20%. 
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Figure 5.3 shows how the number of farms within LAM transition types and EFTs changes 

with the different bundles of LAM thresholds. Despite the large changes in LAM settings 

across the seven runs as outlined above, Figure 5.3a shows that the high-level outcomes do 

not fundamentally change from the default LAM NoBPS result of most current full-time farms 

continuing in their current EFT (“farms stay same”), with limited numbers of farms being able 

to plan a deliberate transition to a more profitable EFT (“farms change EFT”). However, the 

setting does significantly change the relative balance in Figure 5.3c between farms whose 

EFT is unchanged due to “struggling on” (making sufficient FBI to keep going but not enough 

to contemplate transition) and those for which the economic incentive to transition is 

insufficient (“no more profitable alternative”). The large changes in LAM settings across the 

runs do not fundamentally change the default LAM NoBPS distribution of EFTs in Figure 

5.3b. However, as the settings are changed to make deliberate transitions more likely (runs 

#6 and 7 compared to runs #3 and 2), the number of dairy farms increases as this is the 

most profitable alternative for many farms. 

Figure 5.3 Change in distribution of number of farms within (a) simplified LAM transition classes, (b) 

full LAM transition classes across runs with a range of LAM settings and (c) ERAMMP Farm Types 
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Figure 5.4 explores the spatial sensitivity of LAM outcomes to changes in settings to assess 

the spatial coherence and plausibility of simulated EFT changes. The upper panels of Figure 

5.4 show the simplified LAM transitions, focusing on the two runs in which 

deliberate/planned EFT change is made most difficult (#2) or more likely (#7). The 

opportunities for planned transitions to a more profitable alternative farm type (shown in 

blue) increase, but mostly in the low elevation regions. The lower panels relate to the 

simulations in which enforced change (through leaving full-time agriculture) is made more 

unlikely (lower minimum FBI in #4) or more likely (higher minimum FBI in #5).  

Consequently, the “farms under pressure” increase, mostly in the Severely Disadvantaged 

Areas. 

#2 Making deliberate EFT 

change more difficult 

#1 Default #7 Make deliberate EFT 

change more likely 

   

#4 Making enforced 

change more unlikely 

 #5 Making enforced 

change more likely 

 

 

◼ Yellow: Farms that have 

stayed the same 

◼ Blue: Farms that have 

changed EFT 

◼ Black: Farms under 

pressure 

 

 

Figure 5.4 Sensitivity of spatial transitions to changes in the LAM settings 
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5.2.5 Expert Assessment (Consortium): Sense-checking of land use scenario 

outputs 

Quality assurance of the LAM outputs for the scenarios was by expert judgement, evaluating 

the magnitude and direction of change in modelled FBI for each farm type from the baseline 

against scenario changes to key SFARMOD input and output prices. The spatial distribution 

of farm type changes was also evaluated by expert judgement for plausible spatial 

coherence. In particular, that farms under pressure were mostly located within 

agroclimatically-marginal areas within the current Severely Disadvantaged Areas; and that 

simulated farms making deliberate transitions to more profitable EFTs were largely located 

within lowland regions with more productive agroclimates.  

5.2.6 Validation: Comparison of baseline land-cover from SFARMOD/LAM and 

Land Cover Map with field observations at each quadrat location? 

GMEP baseline plot locations were intersected with the SFARMOD/LAM baseline depiction 

of land-use types across Wales. In most cases there was high agreement (Figures 5.5 and 

5.6). Lower agreement was seen in the more dynamic land use types likely to turnover at a 

greater rate spatially and through time. When broken down by the broad habitat to which the 

polygon containing each plot was assigned during field survey again most plot locations 

were in agreement indicating that the downstream MultiMOVE plant suitability model could 

process the upstream land use transitions from SFARMOD/LAM given consistency between 

the two source of land cover information (Figure 5.5). 

 

Figure 5.5 Percentage of GMEP baseline plot locations coinciding with each SFARMOD/LAM land 

use type where this type agreed with the land cover observed during field survey between 2013-16. 
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Figure 5.6 Count of GMEP baseline plots by SFARMOD/LAM land use type and by broad habitat as 
assigned by the field surveyors when visiting each plot in 2013-16. Blue bars indicate agreement 
between the land cover/land use types and denote plots where land use transitions were modelled 
under scenarios of land use change. Green bars indicate where SFARMOD/LAM and field survey did 
not match. These locations remained stable and no modelled change was applied. 
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6 Biodiversity: Birds – BTO models 

Authors: Joe Cooper and Gavin Siriwardena 

6.1 Introduction to the model QA 

This section presents the models used to investigate the influence of land allocation on bird 

abundance and distribution, and the quality assurance methods used to assess the outputs. 

These models use volunteer survey datasets from the BTO/JNCC/RSPB within 1 km 

squares across Wales. The quality assurance methods used are: 

• Peer review: The modelling approach has been applied in other contexts and 

published in the academic literature. 

• Expert Assessment: The baseline results have been presented and discussed in 

Section 6.2.2. 

• Error Checking: Models were checked for the influence of outliers (Section 6.2.3). 

• Validation: Population estimates were compared against percentage occurrence from 

Breeding Bird Surveys and results for habitat specialist species were sense-checked 

by experts (Section 6.2.4). 

6.2 Introduction to the modelling 

The BTO modelling framework is designed to assess the impact of land-use change on bird 

populations. Species-specific models were developed using a combination of landscape 

composition datasets and volunteer bird survey data from the BTO/JNCC/RSPB Breeding 

Bird Survey (BBS) (Freeman et al., 2007). Bird surveys were conducted within 315 spatially 

randomised 1 km squares across Wales, with counts extracted for 68 species from the 

period 2013-2018 using previously established methods (Plummer et al., 2020).  

Landscape composition was first assessed from 1 km square summaries of SFARMOD-LAM 

outputs. Land not covered by SFARMOD was summarised from the National Forest 

Inventory, Land Cover Map Plus (Rowland et al., 2017), Woody Cover Product (Schofield, 

2016), Detailed River Network and Digital Terrain Map. This resulted in 34 landscape 

metrics for spatial cover, land characteristics and farming intensity for each 1km square of 

Wales, for the baseline and each land use scenario. A generalised linear modelling (GLM) 

framework was used to produce unique models for each species in R. Error structure 

(Poisson or negative binomial) was selected that best accounted for overdispersion and 

zero-inflation present in the data, and model covariates were those which had a significant 

influence on species abundance (as detailed in Plummer et al., 2020). 

Models are applied to the baseline dataset (consisting of all 1 km squares across Wales), 

using the R function, predict.glm. This provided bird counts for each square, which were 

summed to provide an overall population estimate for each scenario, with confidence 

intervals constructed through methods developed by Krinsky & Robb (1986). Population 

sizes were compared between scenarios to assess for significant changes in size for 

individual species and between species groups (defined in Bladwell et al., 2018).   
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6.2.1 Peer review: BTO model in the academic literature 

Species-specific, spatial models of bird abundance using BBS data have been produced 

previously within a wide range of studies. Relevant examples include an evaluation of the 

relative importance of landscape, cropping and field boundary factors as influences on bird 

abundance (Siriwardena et al., 2011), measurement of range expansions in response to 

climate warming (Massimino et al., 2015), modelling of bird responses to urban form to 

inform planning (Plummer et al., 2020) and land use based prediction modelling that was 

included in the UK National Ecosystem Assessment (Bateman et al., 2013ab). Specific 

predictive modelling for Wales was integrated within the quick start modelling programme 

under ERAMMP (Thomas et al., 2021). These and other studies demonstrate the utility of 

the data source and the reliability of inference from established modelling techniques. 

Furthermore, the latter four studies incorporate the extension of inferential models to deliver 

predictions.  

6.2.2 Expert Assessment: Sense-checking the inputs and outputs of the BTO model 

To ensure that the BTO model within the IMP was as robust and repeatable as possible, the 

following steps were taken to automate the process and minimise common sources of error: 

• Each scenario was run within an R project, with data saved such that it could be 

reproduced at any time.  

• In order to avoid situations where there was a strong linear relationship between any 

two model covariates, all were assessed for collinearity via the cor() function in R 

(Table 6.1). No pair of values scored more than 0.9, a threshold previously utilised in 

BBS-habitat modelling (Plummer et al., 2020). The six covariate pairs which scored 

between 0.7-0.9 were all products of the SFARMOD-LAM model (crop types) and 

were retained, as a substantial proportion of the differences between each scenario 

run related to crop types.  

• We set a value of 20 BBS squares in which each covariate required a non-zero 

count. This was designated to retain ecologically distinctive habitat types which 

feature rarely in Wales, e.g. saltmarshes. Covariates which appeared in less than 20 

squares were amalgamated with the most biophysically similar covariate (e.g. 

lowland acid grassland, lowland calcareous grassland & lowland neutral grassland 

were combined into semi-natural grassland). The amalgamations are detailed in the 

assumptions document.  

• Coastal squares (defined as those of land area < 900 m2) were removed from 

modelling as these regions are poorly covered by BBS surveys.  

• For each species, model covariates were only assessed for significant correlation 

with abundance, if they were non-zero in > 20 BBS squares with a non-zero count. 

This was performed to decrease the likelihood of false associations between species 

and rarer or ecologically unrealistic habitats.  

• All model covariates had a significant impact on at least one species present in the 

modelling.  
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Table 6.1 In order to avoid situations where there was a strong linear relationship between any two 
model covariates, all were assessed for collinearity via the cor() function in R 
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6.2.3 Error checking: Checks applied to each predictor dataset (baseline and 

scenarios) to make sure these were valid    

The following steps were taken to ensure that each predictor dataset for every run (baseline 

and land use scenario) to trap any common errors that might occur: 

• All coverage estimates in each square were positive. 

• All coverage estimates in each square totalled to within 50 m2 of the overall land 

cover.  

• Each scenario was formed of the same 1 km grid squares as the baseline. 

• In each scenario, all coverage estimates which were not involved in the LAM 

remained identical in cover. 

• The total cover area of a scenario was within 25,000 m2 of the baseline (less than 

1.5 m2 difference in area per 1 km grid square).  

6.2.4 Validation: Assessment of BTO model predictive ability using cross-validation 

Cross-validation is a statistical approach designed to evaluate the performance of predictive 

models, through scoring the accuracy of model relationships on test datasets. The procedure 

involves randomly allocating each species-habitat model input dataset into 10 subsets 

(folds). A model is trained using 9 folds (training data) and used to predict the output in the 

remaining fold (test data). This process is iterated with each fold utilised as test data once 

(Roberts et al., 2017). The deviation between the training data predictions and the real data 

are evaluated through two measures. Spearman’s rank correlation coefficient (rs) is used to 

assess the degree of agreement between predicted and true values, whilst mean absolute 

error (MAE), is used to assess the mean difference in counts between true and predicted 

values (Willmott & Matsuura, 2005).  

Spearman’s rank correlation coefficient rs values for the bird-habitat models averaged at 

0.41 (range 0.66 – 0.12) (Figure 6.1), indicating on average each species model accounted 

for at least a moderate level of the variation in counts. Such values are comparable with 

previously conducted species-habitat models in the wider literature (e.g. Evans et al., 2009; 

Plummer et al., 2020). Low values (<0.3) tended to be a consequence of low sample size in 

the original BBS surveys, with seven species excluded from the modelling through having a 

rs value of less than 0.1. Further evidence for model efficacy was provided by the MAE 

results. The mean predicted count differed to the observed values by an average of 4.1 (1.02 

SE), and less than 3 in 44 of the 68 species. Selection of the overdispersion threshold (6), 

was also a product of sensitivity testing, based upon minimising MAE and increasing rs. 
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Figure 6.1 The predictive ability of bird-habitat models for 68 bird species, as assessed through the 
mean spearman’s rank correlation coefficient and mean absolute error (both with 95% confidence 
intervals), observed from block 10-fold cross validation. Species are denoted by their BBS 5-letter 
code and are ordered from highest spearman’s rank correlation coefficient to least.  
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6.2.5 Expert assessment: Comparison of BTO model predictions with other data 

sources.  

Baseline predictions were assessed for suitability against data from wider sources, including 

wider literature, expert assessment, and other models. This was primarily designed to make 

sure predictions were realistic and the relationship between individuals and model metrics 

behaved as expected.  

• Scenario changes and predictions were discussed with the IMP plant modelling 

team, in particular focussing on whether habitat indicators behaved similarly in both 

models.  

• Indicator species were selected for different model metrics and assessed for whether 

their relationship between these metrics was positive. In all specialist species 

checked (n=12), relationships between species counts and covariates were positive. 

As examples, pied flycatcher had a strong association with broadleaf woodland, 

whilst collared dove was associated with suburban cover.  

• Population predictions were compared against percentage occurrence from the BBS 

surveys, with predicted population sizes matching expectations based upon how 

common a species was in surveys.  

• For land use scenarios T1 and T6, the substantial increases in coniferous woodland 

meant our model only had a limited number of training data to inform predictions (as 

coniferous-dominated squares were rare in BBS surveys). In test runs, this resulted 

in unrealistically high predicted counts for species associated with coniferous 

woodland. As a result, we devised a method to reduce impact of rare habitats 

undergoing substantial increases in cover within a particular scenario and retain 

predictions which were realistic whilst also reflecting the substantial nature of 

scenario changes. 

• A threshold value of 1000 individuals for a 1km square was set, based upon a high-

bound for an observable maximum from BBS survey data. Any model which resulted 

in predictions which exceeded this value were flagged. An iterative method for outlier 

removal was devised based upon Cook’s distances (Cook, 1977), a measure of the 

influence on the observed data when performing a regression-based analysis. We 

applied this to the model input dataset when predictions were flagged. This resulted 

in a lowering of the covariate-count estimate, applying a brake to keep predictions 

realistic within a particular scenario, whilst retaining the baseline model when 

covariate changes are less substantial. For more information, please see the model 

technical guide. 
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7 Biodiversity: Plants - MultiMOVE 

Authors: Simon Smart and Bede West 

7.1 Introduction to the model QA 

This section presents the MultiMOVE model ensemble and the relevant quality assurance 

steps that have been undertaken. This set of models is used to predict plant species 

composition at baseline and for the same locations in scenarios given changes in soil 

conditions and vegetation height expected to arise as a consequence of the change in land 

use predicted by the LAM. The quality assurance steps are:  

• Peer review: MultiMOVE has been discussed in several peer reviewed papers 

(Sections 7.2 and 7.2.1). 

• Error Checking: Transfer of SFARMOD/LAM outputs into MultiMOVE (Section 7.2.2). 

• Validation and Expert Assessment: Soil trajectories (Section 7.2.3).  

• Validation: Reproduction of plant species composition of baseline quadrats (Section 

7.2.4). 

• Error Checking: Verification of the MultiMOVE workflow (Section 7.2.5). 

7.2 Introduction to the modelling 

MultiMOVE comprises a small ensemble of Species Niche Models for British plants (see 

Smart et al., 2010, DeVries et al., 2010, Rowe et al., 2013, Henrys et al., 2015 and Smart et 

al., 2019 for full details of model building, testing and application). Five statistical modelling 

techniques are used to model the probability of occurrence of 1188 higher and lower plants 

in terms of seven environmental variables: i) substrate pH, ii) fertility, iii) soil moisture, iv) 

canopy height, v) annual rainfall, vi) max July and vii) min January temperature. These 

variables were measured or estimated at fine resolution in quadrat samples ranging from 

14.14 x 14.14m (200m2) to 2x2m (4m2) in which full plant species lists were recorded. The 

species’ input data for model building were therefore presence/absence records. A large GB-

wide database of 32,727 quadrats was used to build the models resulting in coverage of all 

habitat dominants and numerous rare and subordinate species. Importantly this means that 

MultiMOVE includes those species that deliver the most ecosystem function and service by 

virtue of their frequency and abundance across ecosystems. Some species groups are 

omitted: alien casuals (alien species that flourish occasionally, but which do not form self-

replacing populations (Richardson et al., 2000)) are excluded as are coastal halophytes and 

several floating and submerged aquatics because of lack of data.  

Because species dispersal is not modelled, the probability values that are output from 

MultiMOVE should be interpreted as habitat suitability indices (Smart et al., 2019). 

Therefore, an output value close to the maximum possible for the species (pmax) suggests 

that abiotic conditions are estimated to be appropriate for establishment and persistence 

should the species be able to reach the location. In order to increase realism and constrain 

the species pool modelled in any one location, we restrict this pool to the number of species 

observed in each sample plot at baseline plus the extra species recorded in the wider 

10x10km square where these can be accessed from the online database maintained by the 

Botanical Society of the British Isles (https://database.bsbi.org/). Lastly, the output values 

from MultiMOVE for each of the five techniques is transformed into a single weighted model 
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average. This is achieved by applying weights to each output based on a prior cross-

validation test of the ability of each technique for each species to predict hold-out samples of 

the training data (see Smart et al., 2019 for details). Because MultiMOVE models each 

species separately, we aggregate results afterwards (a predict first, assemble later 

approach) to generate measures of functional group richness as necessary or present 

results at the individual species level (Ferrier & Guisan, 2006). 

When used in predictive mode, new values for each of the seven input variables are 

supplied to MultiMOVE and each of the five statistical modelling techniques are used to 

solve each of the species’ models. The input values can be adjusted using any number of 

flexible approaches to yield a new configuration of input variables representing a scenario of 

environmental change. As the MultiMOVE model is trained on high quality, fine spatial 

resolution data for known sites and a large number of species it provides very high local 

realism and very flexible model application based on minimal data demands. Unlike many 

other models within the IMP, MultiMOVE models are applied at the small vegetation patch 

scale for specific sites rather than across a consistent raster grid. This means that 

predictions are kept at the patch and field scale at which land use decisions need to be 

made without any averaging that uncouples predictions from the field data. It should be 

noted that the cost of this field-based realism is that the models contain no inherent 

dynamism and are therefore constrained in their ability to produce novel outcomes beyond 

the range of the conditions used to train the model. Any model projecting outside of the 

domain on which it was trained must be viewed as highly uncertain. MultiMOVE issues a 

warning that input data represent novel ecological space, hence, the resulting predictions 

can be isolated and carefully inspected, while the warnings themselves act as a useful check 

on the plausibility of the input data and the potential for increasingly unoccupied niche space 

into which species must either adapt or disperse.   

7.2.1 Peer Review: MultiMOVE papers and niche model validation 

MultiMOVE has been tested on several occasions in other settings (Rowe et al., 2015; 

DeVries et al., 2010). Most recently, an independent assessment of each modelled niche 

axis for each species was carried out by eliciting judgements from two expert botanists with 

experience of the British flora (Smart et al., 2019). This was done in parallel with a 

quantitative assessment of model fit whereby models were retrained and used to predict 

repeated random hold-out samples of the training set (Smart et al., 2019). The results 

showed excellent ability of the models to predict presence/absence patterns in cross-

validation samples (Figure 7.1). 

Given the value of independent assessment but the large number of species in the models, 

a website now exists to crowd-source expert opinion (https://shiny-

apps.ceh.ac.uk/find_your_niche/). 
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 Figure 7.1 Comparison of expert assessments - (a) Expert 1; (b) Expert 2 - for each species niche 
axis combination versus AUC statistics for the associated model and the prevalence of each species 
in the training data used to build each model. Loess smoothers are fitted to each species * niche axis 
combination grouped by the assessment category awarded by the expert. Thus, each point is a 
species * niche axis combination whose position is defined by its prevalence on the x-axis and the 
mean AUC for the species model on the y-axis. Note that prevalence (the proportion of presences/ 
total number of quadrats) was square-root-transformed to spread the data more evenly across the x-
axis (from Smart et al. 2019). 

7.2.2 Error Checking: Deciding whether a GMEP plot location can change land use 

To model the impacts of predicted land use change on plant habitat suitability, the land use 

transitions output from SFARMOD/LAM needed to be processed through MultiMOVE. This 

requires additional steps that translate the land use transitions predicted at baseline 
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locations into changes in the soil and vegetation height inputs that MultiMOVE uses to filter 

the species composition of the assemblage observed at baseline. Two key rule-checking 

steps are required to manage the transfer of SFARMOD/LAM outputs into MultiMOVE. The 

validation and management of these transfers is described below. 

Two major rules govern whether the vegetation and soil in each baseline GMEP plot location 

can be allowed to change (Figure 7.2).  

Firstly, we determine the match between the predicted land use/land cover type from 

SFARMOD/LAM and the habitat observed by the field surveyor when they recorded each 

plot. Where the two agree then change is allowable; these are termed ‘compliant’ plot 

locations. Where they disagree, the predicted land use transition is not processed through 

MultiMOVE and the location remains stable; these are termed ‘deviant’ plot locations. This is 

a conservative approach that means modelled change only occurs in locations where the 

upstream land use models and field observations at baseline agree. This leads to another 

test comparing the two datasets at baseline (see LAM section: Figures 5.5 and  5.6). For 

projected land use change to fully impact plant species via MultiMOVE, then all plot locations 

should be compliant indicating that SFARMOD/LAM and the field classification agree. In 

reality, because SFARMOD/LAM use LCM2015 as a source dataset for land use, the 

matching described above amounts to a test of whether the field survey agrees with the 

satellite classification. In most cases, it does (Figures 5.5 and 5.6). Hence, Figure 5.5 

indicates that for the majority of the quadrat locations modelled by MultiMOVE, the LAM land 

use type agreed with the observed habitat present at baseline. Greatest disagreement was 

where the LAM expected permanent grassland, but the observed habitat was different.  

Secondly, having established a set of matching locations, the next decision criteria focus on 

allowing or disallowing land use change. In broad terms this means that semi-natural habitat 

types such as Fen, Marsh & Swamp, Bog, Bracken, Dwarf Shrub Heath and Broadleaved 

woodland are not permitted to transition to more intensive land use types within MultiMOVE. 

This is because it would mean contravening cross-compliance regulations under the Whole 

Farm Code and the Environmental Impact Assessment Regulations 

(https://gov.wales/sites/default/files/publications/2021-02/environmental-impact-assessment-

guidance.pdf). In these cases, the QA step prevents transitions, which is a conservative 

approach that minimises incorrect prediction because reality on the ground trumps the 

habitat type estimated from the satellite-derived LCM2015. 

Each scenario involved varying patterns of predicted land use change at each plot location. 

The same set of rules was applied on a habitat-specific basis and the resulting decision 

matrices saved for each scenario to aid auditability and repeatability.  
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Figure 7.2 Locations of the GMEP 1 km squares across Wales. Up to 5 2x2m plots are located in 
each square. Soil, habitat type and plant species composition were recorded in each and used as the 
baseline dataset for MultiMOVE modelling in the IMP. 

7.2.3 Validation & Expert Assessment: Soil trajectories 

The soil trajectories within MultiMOVE were derived by assembling observed and 

experimentally induced changes in soil conditions from published sources. These changes 

were summarised as mean changes per year with uncertainty. The plausibility of the models 

was subject to expert validation as part of the PhD supervision process for Bede West. In 

summary the direction and magnitudes of change in soil variables given varying broad 

habitat starting points was checked against the combined 60 years’ experience of land use 

change research by Prof Davey L. Jones and Dr Simon Smart. No outliers or implausible 

trajectories were observed in the literature-derived transitions.   

Care was taken to closely match the methods of each study found during literature review to 

the GMEP methods or ensure data values could be converted to match. Non-UK studies 

were omitted. This search resulted in datasets of varying size as requests were made to 

study authors to provide full datasets but not always yielded, and also including relevant 

open access data; these are: 

• Project supplementary material from grassland restoration from arable (Pywell et al., 

2007). 

• UK Department for Environment, Food and Rural Affairs (Defra) report (Wagner et 

al., 2014). 
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• Rothamsted Research, Park Grass long-term experiment data (Rothamsted 

Research, 2016). 

• Project on restoration from farmland (Pywell et al., 1994). 

• Full data set provided by author from Marrs et al. (2018). 

• Summary data published in McGovern et al. (2014). 

• Defra project on managing grassland diversity (Defra, 2015). 

• Elan Valley grasslands report (Hayes & Lowther, 2014). 

• A 12-year fertilizer and lime experiment, supplementary material from (Kirkham et al., 

2011). 

The benefit of modelling at each of the GMEP plot locations is high realism reflecting the 

availability of fine resolution soil input data and observed species composition. The 

disadvantage is that these locations cannot be dynamically modelled using a soil 

biogeochemical model because prohibitive amounts of additional data would be required at 

each of the quadrat locations modelled. An empirical and data-driven approach was taken to 

assembling plausible trajectories of change in the soil variables used as input to MultiMOVE 

using a wide range of published papers. Our goal was to build replicated time series of 

change in pH, %C and %N from experiments, modelling and chronosequence studies where 

soil change was driven by a management intervention corresponding to the land use 

transition of interest. Average rates of change per year were then extracted and applied to 

each set of starting values in each plot predicted by SFARMOD/LAM to undergo the 

respective land use transition. The assembly of these data was carried out by Bede West as 

part of his ENVISION-funded PhD. Construction and plausibility of the soil models have 

been reviewed by Dr S. Smart and Prof D.L. Jones as part of the PhD supervision process 

and are due for publication soon. 

7.2.4 Validation: Comparison of MultiMOVE predictions with the plant species 

composition of baseline quadrats 

Further testing was carried out by investigating whether, given soil, climate and vegetation 

height at each plot location, MultiMOVE was able to successfully predict the observed 

species composition in the baseline quadrats (Figure 7.3). This was achieved by comparing 

the model’s performance (predicted habitat suitability) for all observed species in plots with a 

random draw of the predicted suitabilities from all the modelled species. Performance was 

good with most observed species (statistic) having higher probabilities than a random draw. 

Where models were less reliable and results were closer to random (left of the line in Figure 

7.4) this could largely be explained by low numbers of observations in the dataset (Figure 

7.4). Hence the vast majority of species were more likely to be correctly predicted as being 

present when they were in fact present in baseline quadrats.  

Further support for good predictive ability across the models comes from a cross validation 

exercise (Figure 7.5). This involved building all models repeatedly, but leaving out a single 

random quadrat sample from the training data. The predictions from the models are 

compared with observed species in the hold-out sample and the number of correctly and 

incorrectly predicted species are noted. Values were accumulated across 10,000 cross-

validated model checks for each modelling technique and species. The statistic takes into 

account the need to correctly predict when a species is present without at the same time 

predicting presence when in fact the species is absent. So ideally the true positive rate 
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should be high and the false positive rate low. This ratio increases as the AUC statistic 

increases (Figure 7.5).   

  

Figure 7.3 Results of randomisation testing of the ability of MultiMOVE to reproduce observed species 
composition in baseline quadrats. The bar on the extreme right shows that in c.750 observed 
occurrences of species in different baseline quadrats the predicted habitat suitability (P_obs) was 
always greater than a random draw (P_pool) of predicted habitat suitabilities for the other plant 
species in the local pool (present in 2x2m quadrats + present in wider 10km square). 
 

  

Figure 7.4 Relationship between predicted suitability for observed versus randomly drawn suitability 
values (P_obs > P_pool) and number of presences in the training data used to build MultiMOVE. As 
expected rare species end up with less reliable niche models in MultiMOVE. 
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Figure 7.5 AUC statistics for MultiMOVE models. A value of one indicates prefect prediction with no 

false positives. Values above 0.8 are generally considered to indicate very good predictive ability. 

7.2.5 Error Checking: Checks in the MultiMOVE workflow 

Each modelled scenario run is produced using an R project dedicated to that scenario and 

that can be rerun in its entirety. Each project consists of three R code files comprising code-

chunks that generate saved output that can also be reproduced at any time. Several 

automated checks are built into the code within the MultiMOVE R package to flag any 

common errors.  

Firstly, the data are checked to ensure input variables are within the range of the training 

data with warnings issued when this is not the case. All data were within the range of the 

training data within the Land Use Scenario modelling.  

Secondly, the LAM-MultiMOVE linking tables are checked and compared across scenarios 

to ensure consistency and trap errors. These critical tables (one per scenario) join the land 

use transitions predicted in SFARMOD/LAM with the associated shift in vegetation height 

and soil conditions needed by MultiMOVE. Each table is structured such that every unique 

land use transition from SFARMOD/LAM is assigned a binary indicator that allows the 

transition to be modelled by MultiMOVE or not (due to cross-compliance preventing the 

change in land use: see Figure 5.5 and Figure 5.6  in Section 5.2.6). Those allowable 

transitions are then classified by the type of transition involved. Then each location 

undergoing a particular transition type is attached to a sequence of numbers representing 

the amount of change in vegetation height and soil input variables to be modelled over time 

in response to the particular land use transition and given the particular vegetation at the 

start. 

The key QA checks undertaken here aim to ensure that the linking has worked correctly. The 

checks include assuring that i) all LAM DMU have a spatial link to a GMEP baseline quadrat 

location, and ii) that all LAM-modelled transitions are represented by a profile of expected 

changes in soil conditions and canopy height. Both these checks were passed in the Land 

Use Scenario modelling.  
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8 Habitat connectivity  

Authors: Amy Thomas and Eleanor Warren Thomas  

8.1 Introduction to the model QA 

The habitat connectivity models identify areas where new habitat, as generated by the LAM, 

would connect two patches of unconnected habitat types. The quality assurance steps are: 

• Expert Assessment: The model code has been checked and the outputs have been 

visually checked to ensure they are identifying land that would create connectivity 

given the model parameters. 

8.2 Introducing the modelling 

The model identifies existing connectivity and opportunity for new connectivity between 

patches of habitat. It does this by identifying the area or “zone” around a habitat patch that 

would be accessible to biodiversity within the patch, based on a user input dispersal distance 

and patch size. Where the “accessible zone” contains another patch of the same habitat 

type, the habitats may be considered connected. If “accessible zones” overlap, new 

woodland in the “overlapping zone” would create a connection between the existing habitat 

patches. Different species types will have differing habitat size requirements and dispersal 

capabilities, so model parameterisation, in terms of patch size and dispersal distance, is 

crucial to the interpretation of results (Table 8.1). 

The method was developed, and an ArcGIS toolbox created by A. Thomas. The code was 

then reviewed and edited by E. Warren and A. Thomas, and applied across Wales using a 

range of parameters derived from the literature, as shown in Table 8.1. A. Thomas then used 

the outputs from these model runs to identify which DMUs could create connectivity for 

existing broadleaf woodland (under any of these parameterisations) if they were planted as 

woodland or regenerated natural woodland. 

Table.8 1 Parameterisation applied for the habitat connectivity model implementation. Dispersal 
distances and minimum patch sizes from: Watts et al., 2010; Natural England Nature Recovery 
Networks Evidence Review. Note: 10 ha for woodland specialist birds (Dolman et al., 2007). 

Dispersal distance/  
patch size 

100m:  
snails  

200m: 
woodland 
specialist 
plants 

500m: 
invertebrates 

1km: max. for 
snakes; 
amphibians; 
moths 

2km: max. 
for 
woodland 
flora/fauna 

1 ha: low area 
requirements 

not modelled modelled modelled not modelled not modelled 

10 ha: high area 
requirements 

not modelled modelled modelled not modelled not modelled 

40 ha: NE 
recommended 
minimum size for 
wildlife site 

not modelled modelled modelled not modelled modelled 
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8.2.1 Expert Assessment (Consortium): Interpreting model outputs in the baseline 

scenario 

There are no appropriate datasets for comparison. Whilst the model outputs could be 

compared to the outputs of alternative connectivity modelling tools, this would be a 

comparison of approaches with differing assumptions, modelling different aspects of 

connectivity. Hence, such a comparison would not explore uncertainty in the model output as 

it should be interpreted, rather it would explore the variation between different types of 

connectivity (e.g. areas which are already linked to one patch of woodland vs areas which 

have potential to join two patches of woodland). 

Based on review of the code, and visual assessment of outputs, we are confident that the 

code does what it should and is identifying land which would create connectivity as per the 

parameters. However, these output data should be used appropriately, and may be 

unsuitable for some uses. For example, data should not be used for targeting of new 

woodland planting because whilst theoretically planting trees in the identified locations would 

create connectivity for the relevant types of biodiversity, it cannot be said that new woodland 

in those locations would create a discernible benefit for the relevant types of biodiversity. 

Actual benefits in practice would be strongly dependant on other factors such as the existing 

levels of the relevant types of biodiversity in the habitats being connected, as well as other 

factors such as barriers in the landscape, and potential negative impacts of connectivity, e.g. 

for disease transmission, movement of invasive species or impacts on predator prey 

relationships. 



Environment and Rural Affairs Monitoring & Modelling Programme (ERAMMP) ERAMMP Report-60TA2 

ERAMMP Technical Annex-2 Report-60TA2: IMP Land Use Scenarios QA v.1.0.0 Page 50 of 105 

9 Agricultural Pollutant Coefficients - Farmscoper 

Authors: Richard Gooday, Amy Thomas, Daniel Sanders and Christopher Feeney 

9.1 Introduction to the model QA 

Farmscoper provides farm pollutant emission coefficients for nitrate, phosphorus, sediment, 

methane, nitrous oxide and ammonia. These coefficients are combined with agricultural 

scalar data (e.g. area of improved grassland or quantity of beef slurry applied to arable land) 

from SFARMOD to predict total agricultural pollutant loads for the different scenarios.  

This section describes validation of the Farmscoper coefficients independently from the 

SFARMOD data by using an alternative input agricultural scalar dataset (referred to as the 

“ADAS 1 km2” data). It also compares the ADAS 1 km2 input dataset with SFARMOD output 

so as to understand the influence of any differences. Note that actual QA of the combination 

of Farmscoper coefficients with SFARMOD input data is described separately in Section 10 

(for GHGs) and Section 11 (for water pollutants).  

The contents of Section 9 are thus:  

• Validation: Comparison of modelled agricultural loads using the Farmscoper 

coefficients and the non-SFARMOD input agricultural scalar data (“ADAS 1 km2”) 

with previously published results; including a comparison of the spatial distribution of 

predicted pollutant distributions (Section 9.2.1). 

• Validation: Comparison of the agricultural scalar data from SFARMOD with that 

derived from the ADAS 1 km2 data (Section 9.2.2). This section is important to help 

explain any differences in Sections 10 and 11. 

9.2 Introduction to the modelling 

The Farmscoper model (Gooday et al., 2014) was used to calculate annual average losses 

of sediment, nitrate, phosphorus to water; and of ammonia, nitrous oxide and methane to air. 

Farmscoper was populated with cropping and livestock data for three representative farm 

systems (extensive grazed livestock; intensive grazed livestock and arable systems). This 

was done using data derived from the June Agricultural Survey for Wales, alongside other 

information of farm management taken from national surveys. Where possible data for 

Wales were used (e.g. the Welsh Farm Practice Survey (Anthony et al., 2012)), or for 

England and Wales (e.g. the Defra Farm Practice survey).  

This farm management information included, for example, the proportion of manure 

managed as slurry and the uptake of various mitigation measures. The three farm systems 

were then modelled on each of the three soil types and six climate zones available within 

Farmscoper. Pollutant loss coefficients per unit input (e.g. pollutant loss attributable to dairy 

slurry per kg of N in dairy slurry) were calculated from the Farmscoper source-apportioned 

pollutant loss results.  

In the IMP, the agricultural pollutant loads are then calculated by multiplying SFARMOD data 

(e.g. kg of dairy slurry N) at the DMU level by the appropriate coefficients for the Farmscoper 

soil type, climate zone and farm type of that DMU. Pollutant loads at other spatial scales are 

then determined by summing the results for the DMUs. 
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This coefficient approach allowed the losses predicted by Farmscoper to scale with the input 

data from SFARMOD, which would vary between DMUs and would change as a result of 

different scenarios. Coefficients are based on average climate data (1961-1990) (as that is 

the data within Farmscoper v4) and do not reflect variations in weather between years. 

9.2.1 Validation: Assessing the IMP Farmscoper coefficients using ADAS 1 km2 

June Census Data 

To independently QA the Farmscoper coefficients developed for use in the IMP before they 

are integrated with the SFARMOD agricultural scalar data, the coefficients were combined 

with an alternative scalar dataset created using the ADAS 1 km2 June Agricultural Survey 

(JAS) dataset for 2014 (Lee et al., 2015). The total pollutant loads calculated using this 

approach have been compared against three alternative datasets: 

1. Anthony et al. (2012), which used 2004 JAS data to calculate pollutant loads as part 

of an assessment of the impacts of Tir Cynnal and Tir Gofal; 

2. The SEPARATE database (Zhang et al., 2014), which contains modelled pollutant 

loads for all WFD waterbodies in England, taken from the PSYCHC (Davison et al., 

2008) and NEAP-N (Lord and Anthony, 2000) models using JAS data for 2010; 

3. GHG and ammonia emissions from the National Atmospheric Emissions Inventory 

(data for 2018). 

The ADAS 1 km2 agricultural census dataset contains land use and livestock data (hectares 

of cropping and count of stock per 1 km2) derived from holding level June Agricultural 

Survey data. In order to use this dataset with the Farmscoper coefficients created for use in 

the IMP, appropriate scalars were derived for each livestock and crop category (e.g. kg N in 

dairy excreta per dairy cattle, kg N in beef slurry applied to grass per beef cattle). These 

scalars could then be multiplied by the 1 km2 census data to provide the total scalar data to 

use with the Farmscoper coefficients in order to calculate pollutant losses (whereas in the 

IMP, the total scalar data for each DMU is determined by SFARMOD). This allowed for an 

independent assessment of the Farmscoper coefficients outside of the IMP, and an 

additional dataset against which to compare aspects of the IMP calculations. For each 1 

km2, it was also necessary to determine the appropriate Farmscoper soil category, which is 

based upon HOST class, and Farmscoper climate zone, based upon annual average rainfall.  

Table 9 1 shows that the predictions as part of the QA are close to those of Anthony et al. 

(2012) for nitrate and close to SEPARATE for phosphorus and are between the values for 

sediment. Nitrous oxide emissions are close to those of Anthony et al. (2012), but both are 

greater than the NAEI figures. Ammonia emissions in the QA are also higher than in the 

inventory (they were not calculated as part of Anthony et al. (2012)). Both Farmscoper and 

Anthony et al. (2012) used the IPCC (1996) methodology as a basis for their calculations, 

using default coefficients derived for Western Europe (see Baggott et al., 2006). The 

methodology used in the NAEI has evolved since, with changes to many coefficients and 

more sophisticated tier 3 approaches adopted for some calculations (see Brown et al., 

2021), including Welsh-specific calculations of N excreta from livestock. These changes 

explain some of the differences between the emissions from Farmscoper and the NAEI. The 

calculated emissions can also be very sensitive to management assumptions (e.g. the 

ammonia loss from a kg of excreta at grazing is a fraction of that if the excreta are deposited 

in the yard). Small differences in where cattle are assumed to spend their time, or how 

manure is managed can thus have a big impact. 
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Table 9 1 National annual average agricultural pollutant loads (kt yr-1) 

Area Sediment Nitrate Phosphorus 
Ammonia 
NH3-N 

Nitrous 
Oxide 

Methane 

ADAS QA 393 37.6 1.04 25.4 8.0 150 

Anthony et al. 
(2012) 

220 36.5 0.65 N/A 8.5 135 

SEPARATE 479 26.3 0.97 N/A 

NAEI N/A 18 5.2 139 

 

The data in Anthony et al. (2012) allow for a comparison of the area and source 

apportionment of the pollutant loads with those predicted as part of the QA process (Table 

9.2 and Table 9.3 respectively). Grassland is unsurprisingly the dominant area for all 

pollutants, with the most notable difference being the greater contribution to the sediment 

load from rough grazing (19% in the QA, 29% in Anthony et al. 2011). This is related to the 

large difference in total sediment load predicted for the two approaches, as shown in Table 

9.1 (i.e. the absolute load from rough grazing is approximately equal for the two 

approaches). There is slightly more pollution predicted from non-field areas (steadings, 

tracks etc.) in the QA approach, but there is arguably greater uncertainty around 

assumptions made for these losses (e.g. time spent in yards, cleaning efficacy, etc.) and 

thus there is no reason to say one of the modelled outputs is correct and the differences are 

small enough to have limited impact on any results or conclusions drawn from the modelling. 

The apportionment by source is also largely comparable for the two approaches, although 

the QA approach assumes a greater proportion is from dairy animals, and slightly less from 

beef. Contributions from pigs and poultry are small in both approaches, with a maximum 

contribution to the load of 3%.  

Table 9 2 Comparison of area apportionment for national annual average agricultural pollutant loads 
a) derived using the Farmscoper export coefficients created for the IMP and scalar data derived from 
ADAS 1 km2 agricultural census data for 2014 and b) from Anthony et al. (2012) calculated using 
2004 agricultural census data. 

 Area Sediment Nitrate Phosphorus Ammonia Nitrous 

Oxide 

Methane 

A
D

A
S

 Q
A

 

Arable 16.3 12.4 8.5 5.1 9.2 0.1 

Grass 64.0 74.4 74.2 46.8 76.1 60.8 

Rough 18.6 6.5 8.3 0.0 4.2 2.4 

Woodland 1.1 4.4 1.1 - 0.8 - 

Non-field - 2.3 8.0 48.0 9.7 36.7 

A
n
th

o
n
y
 e

t 
a
l.
 

(2
0
1
2

) 

Arable 12.6 10.9 7.8 

No Data 

3.7 0.3 

Grass 58.6 82.7 73.2 80.9 49.4 

Rough 28.8 5.2 14.4 4.9 8.5 

Woodland No Data 

Non-field 0.0 1.0 4.6  10.4 41.8 
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Table 9 3 Comparison of source apportionment for national annual average agricultural pollutant 
loads a) derived using the Farmscoper export coefficients created for the IMP and scalar data derived 
from ADAS 1 km2 agricultural census data for 2014 and b) from Anthony et al. (2012) derived, 
calculated using 2004 agricultural census data 

 Source Sediment Nitrate Phosphorus Ammonia Nitrous 

Oxide 

Methane 

A
D

A
S

 Q
A

 

Dairy - 20.7 10.0 38.1 21.4 29.5 

Beef - 15.5 8.9 31.3 15.5 29.8 

Sheep - 17.9 12.7 17.4 31.3 40.6 

Pigs - 0.1 0.0 0.2 0.1 0.0 

Poultry - 0.7 0.5 1.1 0.6 0.0 

Fertiliser - 17.2 10.9 12.0 20.8 - 

Soil / Residue 100.0 27.9 57.0 - 10.4 - 

A
n
th

o
n
y
 e

t 
a
l.
 (

2
0
1
2
) 

Dairy - 18.5 8.4 

No Data 

8.3 29.5 

Beef - 21.2 11.8 15.9 33.4 

Sheep - 16.0 8.8 19.4 36.5 

Pigs - 0.2 0.0 2.0 3.0 

Poultry - 3.0 0.8 1.0 0.5 

Fertiliser - 19.8 8.3 12.8 - 

Soil / Residue 100.0 21.3 61.9 42.5 - 
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Table 9 4 part 1 (Sediment and Nitrate-N): Comparison of spatial distribution of pollutant losses (as kg 
ha-1 of agricultural land) for national annual average agricultural pollutant loads a) derived using the 
Farmscoper export coefficients created for the IMP and scalar data derived from ADAS 1 km2 
agricultural census data for 2014 and b) from Anthony et al. (2012) calculated using 2004 agricultural 
census data summarised at WFD waterbody scale. 

 

ADAS QA of Farmscoper 

coefficieints for IMP, using 2014 

Agricultural Census 

Anthony et al. (2012)  

using 2004 Agricultural Census 

S
e
d

im
e
n

t 

  

N
it

ra
te

 

  

 

Present Day Modelled Sediment Emission

from all Agricultural Land Including Commons

Agri-Environment Monitoring
Technical Services Contract
Lot 3. Soil, Water and Climate ChangeA

0 - 100

101 - 250

251 - 500

501 - 1000

> 1001

Emission

(kg Z ha  )
-1

Wales Political

Boundary

Present Day Modelled Nitrate Emission

from all Agricultural Land Including Commons

Agri-Environment Monitoring
Technical Services Contract
Lot 3. Soil, Water and Climate ChangeA

0 - 10

10.1 - 20

20.1 - 30

30.1 - 40

> 40.1

Emission

(kg NO  -N ha  )
-1

Wales Political

Boundary

3
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Table 9 4 part 2 (N20 and Phosphorous): Comparison of spatial distribution of pollutant losses (as kg 
ha-1 of agricultural land) for national annual average agricultural pollutant loads a) derived using the 
Farmscoper export coefficients created for the IMP and scalar data derived from ADAS 1 km2 
agricultural census data for 2014 and b) from Anthony et al. (2012) calculated using 2004 agricultural 
census data summarised at WFD waterbody scale. 

P
h

o
p

s
o

h
ru

s
 

  

N
it

ro
u

s
 O

x
id

e
 

  

 

Present Day Modelled Phosphorus Emission

from all Agricultural Land Including Commons

Agri-Environment Monitoring
Technical Services Contract
Lot 3. Soil, Water and Climate ChangeA

0 - 0.25

0.25 - 0.50

0.51 - 1.00

1.01 - 2.00

> 2.01

Emission

(kg P ha  )
-1

Wales Political

Boundary

Present Day Modelled Nitrous Oxide Emission

from all Agricultural Land Including Commons

Agri-Environment Monitoring
Technical Services Contract
Lot 3. Soil, Water and Climate ChangeA

0 - 2

2.1 - 4

4.1 - 6

6.1 - 8

> 8.1

Emission

(kg N  O ha  )
-1

Wales Political

Boundary

2
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Table 9 4 part 3 (Methane): Comparison of spatial distribution of pollutant losses (as kg ha-1 of 
agricultural land) for national annual average agricultural pollutant loads a) derived using the 
Farmscoper export coefficients created for the IMP and scalar data derived from ADAS 1 km2 
agricultural census data for 2014 and b) from Anthony et al. (2012) calculated using 2004 agricultural 
census data summarised at WFD waterbody scale. 

M
e
th

a
n

e
 

  

 

The validation shows that the Farmscoper datacube can recreate the spatial patterns and 
emission totals from previous modelling work, when combined with an independent dataset 
from the IMP, particularly given the uncertainties in environmental and farm management 
data. There are some discrepancies in GHG and ammonia emissions, related to both i) 
changes in the official calculation approach since Farmscoper was developed and this 
project was started and ii) the sensitivity of the calculations to assumptions on certain farm 
management practices. 

9.2.2 Validation: Comparison of the agricultural scalar data from SFARMOD with 

that derived from the ADAS 1 km2 data 

To QA the SFARMOD agricultural scalar data that is used with the Farmscoper coefficients 

in the IMP, a comparison was performed between the SFARMOD scalar with those derived 

from ADAS 1 km2 agricultural census data for 2014 (used to construct Table 9 1). As 

SFARMOD only models farms greater than one full time equivalent (FTE), assumptions were 

made about the land, stocking and management on farms < 1 FTE (from data for such farms 

in the JAS). The ADAS scalar data, that from SFARMOD and for the small farms are shown 

in Table 9 5. 

  

 

Present Day Modelled Methane Emission

from all Agricultural Land Including Commons

Agri-Environment Monitoring
Technical Services Contract
Lot 3. Soil, Water and Climate ChangeA

0 - 40

41 - 80

81 - 120

121 - 160

> 161

Emission

(kg CH   ha  )
-1

Wales Political

Boundary

4
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Table 9 5 Comparison of IMP scalar totals (from SFARMOD and for farm < FTE) with the scalars 
derived from ADAS 1km2 agricultural census data for 2014 (used to construct table 0-1). Values are 
in ‘000s 

  

ADAS QA 

IMP Difference 
(IMP – 
ADAS) 

SFARMOD 
output 

Small Farms 
(<1 FTE) 

Area (ha) 

Arable  90 66 14 -10 

Grassland  1,210 610 333 -267 

Rough grazing  257 248 30 22 

Woodland  296 69 32 -195 

Fertiliser N 
applied (kg) 

Arable  9,861 7,395 1,122 -1,344 

Grassland  65,429 41,907 12,221 -11,302 

Fertiliser P 
applied (kg) 

Arable  2,749 1,492 406 -850 

Grassland  9,982 11,430 5,666 7,114 

Dairy (kg N) 

FYM to arable 365 73 4 -287 

FYM to grassland  3,285 3,497 40 252 

Slurry to arable 1,230 164 19 -1,047 

Slurry to grassland 11,073 31,850 174 20,951 

Excreta at grazing 13,269 15,985 267 2,983 

Excreta total 29,222 51,569 601 16,448 

Beef (kg N) 

FYM to arable 1,160 11 256 -893 

FYM to grassland  8,083 8,819 1,805 2,542 

Slurry to arable 164 0 36 -127 

Slurry to grassland 1,472 17,405 324 16,258 

Excreta at grazing 20,426 17,007 4,546 1,127 

Excreta total 31,305 43,242 8,778 12,491 

Sheep (kg 
N) 

FYM to arable 131 0 13 -118 

FYM to grassland  1,176 2,734 97 1,654 

Excreta at grazing 58,929 28,005 4,793 -26,132 

Excreta total 60,236 30,739 5,050 -25,480 

Pig (kg N) 

FYM to arable 4  3  
FYM to grassland  38  29  
Slurry to arable 5  3  
Slurry to grassland 47  27  
Excreta at grazing 0  0  
Excreta total 94  101  

Poultry (kg 
N) 

Manure to arable  98  28  
Manure to grassland 885  256  
Excreta at grazing 0  6  
Excreta total 983  444  

 

Table 9-5 shows there is a difference of 267,000 ha in the area of grassland, with a much 

lower figure used in the IMP. The 2019 report on the JAS data for Wales3  shows an 

 

 

3 June 2019 Survey of Agriculture and Horticulture: results for Wales (gov.wales) 
 

https://gov.wales/sites/default/files/statistics-and-research/2019-11/survey-agriculture-and-horticulture-june-2019-730.pdf
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increase of approximately 200,000 ha since 2010, with the following note “The increase in 

the total land on farm holdings in recent years is believed to be linked to issues with 

registration of land. Principally by the re-registering of existing land and also continued 

registration of land no longer in agricultural use”. Therefore, it is likely that the IMP data is 

more correct, with the ADAS QA dataset affected by this issue. Nitrogen fertiliser rates 

expressed per hectare are broadly comparable between the ADAS QA data (based of British 

Survey of Fertiliser Practice (BSFP) information) and SFARMOD (which are initially based 

on recommended rates from RB209), but phosphorus fertiliser rates in SFARMOD based on 

an independent analysis of BSFP data for 2017) are higher than ADAS QA figures. 

Section 3.2.4 shows that stocking numbers in SFARMOD are comparable to national totals. 

However, in Table 9 5, total nitrogen in excreta for beef and dairy cattle are higher in the IMP 

data, whilst the sheep total nitrogen in excreta are lower. SFARMOD calculates a volume of 

material deposited (plus any dilution) and then converts this to a nitrogen load using a 

concentration, rather than directly assigning a nitrogen load, and considers a cow and its 

followers together rather than individual stock categories, so it is difficult to directly compare 

with the ADAS QA and identify causes of the differences. SFARMOD also assumes that 

much more beef excreta is handled as slurry than in the ADAS QA. The difference in sheep 

excreta is largely due to the ADAS QA using a lowland ewe value for sheep excreta, 

whereas SFARMOD has used a lower value that takes into account the large numbers of 

light breeds of sheep that uniquely characterise the traditional breeds in the mountains of 

Wales. 

Pigs and poultry were not included in the IMP, but Table 9 5 shows that the amount of 

excreta produced by these livestock is less than 1% of the total from all livestock, thus the 

consequences of this are not important at a large scale. 
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10 Greenhouse Gas and Ammonia Emissions 

Authors: Amy Thomas and Richard Gooday 

10.1 Introduction to the model QA 

As described in Section 9, pollutant loss coefficients for methane, nitrous oxide and 

ammonia were derived from Farmscoper and combined with data from the SFARMOD to 

predict total agricultural pollutant loads for the different scenarios. The QA of the pollutant 

coefficients is described in Section 9. This section presents the QA of agricultural 

greenhouse gas (GHG) and ammonia outputs derived from the combination of SFARMOD 

outputs and Farmscoper coefficients. Section 11 focuses on water quality outputs. 

The QA of GHG and ammonia emissions comprises 3 sections: 

• Building Understanding: Presenting the breakdown between the IMP modelled farms 

> 1 FTE and small farms under this threshold (Section 10.2.1). 

• Validation: Comparison of IMP total emissions for ammonia and GHG with totals from 

the ADAS QA (Section 9) and the National Atmospheric Emissions Inventory (NAEI) 

(Section 10.2.2). 

• Validation: Comparison of the IMP emissions at 10 x 10 km2 with NAEI data (10.2.3). 

10.2 Introduction to the modelling 

Ammonia and GHG emissions are calculated at the DMU level by aggregating the 

SFARMOD scalar data for that DMU with the relevant Farmscoper coefficients, accounting 

for the DMU climate zone, soil type and farm type (see Section 9.2 for more detail). The 

same process is applied for farms not modelled by SFARMOD (those < 1 FTE), where 

typical stocking rates and management are used to calculate the scalar data to combine with 

the Farmscoper coefficients.  

10.2.1 Building Understanding: Presenting the breakdown between the SFARMOD 

farms (> 1 FTE) and small farms under this threshold 

Table 10.1 shows the IMP results from linking SFARMOD outputs with the Farmscoper 

coefficients and the results for farms less than 1 FTE which are not modelled by SFARMOD.  

The results presented here were requested by WG to aid with the interpretation of model 

outputs by determining the contribution of the SFARMOD modelled farms relative to smaller 

farms with < 1 FTE. SFARMOD farms contribute 92% for ammonia and 86% for nitrous 

oxide, despite only occupying 70% of the agricultural land (see Table 9 5), reflecting the 

greater stocking density and fertiliser use on these farms. 
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Table 10.1 Total modelled annual average agricultural pollutants for CH4 and N2O, NH3 for the IMP 
baseline, disaggregated for the farms modelled by SFARMOD and the smaller farms. 

 
SFARMOD Farms < 1 FTE IMP total 

Methane (kt CH4) 120 13 133 

Nitrous Oxide (kt N2O) 5.6 0.8 6.4 

Ammonia (kt NH3-N) 31 3 34 

 

10.2.2 Validation: Comparison of IMP total emissions for ammonia and GHG with 

totals from the ADAS QA and the NAEI 

Total outputs of agricultural pollutants for air quality and GHG emissions are shown in Table 

10.2. These values shown are the modelled outputs from the IMP plus the projections for 

small farms (i.e. the “Total” values in Table 10.1 where national values are calculated using 

the IMP-Farmscoper coefficients linked to ADAS 1 km2 JAS data for 2014).  

IMP totals are close to the ADAS QA totals in Table 10.2 and to the NAEI data for both 

methane and nitrous oxide. However, for ammonia, the IMP is higher than both the ADAS 

and NAEI values. This is related to differences in management assumptions and the large 

variations in ammonia losses depending upon where excretion occurs. Table 10.2 shows 

that there is much more dairy excreta in the IMP than in the ADAS QA. This will cause much 

more ammonia pollution due to the amount excreted on hardstanding (whilst the cows are 

waiting to be milked). For other pollutants, this is not so important and so differences in dairy 

excreta between IMP and ADAS QA are negated by comparable differences in sheep 

excreta.  

The final column in Table 10.2 shows nitrous oxide levels adjusted for peat N2O emissions. 

Peatland N2O emissions are modelled separately (see Section 13.2.1) using a different 

method based on wetland coefficients. The value presented here is the total N2O value from 

Table 10.1 minus the N2O stored in peatland. This is highlighted to avoid double counting of 

peatland N2O. 

Table 10.2 Total modelled annual average agricultural air quality and GHG emission for the 

IMP baseline compared to totals from Table 9-1 (calculated using the Farmscoper 

coefficients and data derived from ADAS 1 km2 agricultural census data for 2014) and 

National Atmospheric Emissions Inventory totals for 2018. 

 
Methane 
(kt CH4) 

Nitrous 
oxide* 
(kt N2O) 

Ammonia  
(kt NH3 N) 

Peat-corrected 
nitrous oxide* 
 (kt N2O) 

Total (IMP + <1 FTE farms)  133 6.4 34 6.3 

ADAS 2014 + FS-IMP (Table 8.1) 150 8.0 25 N/A 

National Atmospheric Emissions 
Inventory (2018) 

139 5.2 18 N/A 
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10.2.3 Validation: Comparison of distribution of emissions for Air Quality and GHG 

from SFARMOD-Farmscoper with NAEI 

Figure 10.1 shows model outputs compared to data from the National Atmospheric 

Emissions Inventory (NAEI) 2018. These are gridded (1 km resolution) air quality data (t) for 

methane (CH4), ammonia (NH3) & nitrous oxide (N2O) for the year 2018. Individual 

raster/ascii grids for each type of emissions sector were used for the QA4 . Data were 

aggregated to 10 km due to uncertainty in the agricultural data used in NAEI at 1 km (NAEI 

aggregate data to coarser scales and then distribute averages on a 1 km grid due to data 

sensitivity). 

The over-prediction in ammonia at the national scale is systematic, and so the IMP modelled 

data is nearly always greater than the NAEI data. For all three pollutants, there is a 

correlation between the IMP output and the NAEI, but the spatial agreement here is worse 

for ammonia (r2 = 0.51) than for CH4 and N2O (r2=0.95 and 0.76 respectively). This reflects 

the greater difference in national predictions. Some of this scatter may be associated with 

pig and poultry farms, which are locally significant but only contribute a few percent of the 

total at the national scale and were not included in the IMP. Note that the spatial pattern is 

not important for nitrous oxide and methane as GHG benefits are quantified at the national 

scale.  For ammonia, the disagreement identified here will feed into the health modelling in 

Section 12. 

 

 

Figure 10.1 Comparison of IMP outputs to 10 X 10 km gridded NAEI data for NH3, CH4 and N2O. 

 

 

4 For each pollutant, the NAEI provide a breakdown by sector - the relevant layer for the agricultural 
sector is labelled “agric- SNAP 10 (Agriculture, Forestry and Landuse Change)" on the NAEI website.  
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11 Water quality 

Authors: Amy Thomas 

11.1 Introduction to the model QA 

As described in Section 9, pollutant loss coefficients for nitrate, phosphorus and sediment 

were derived from Farmscoper and combined with data from the SFARMOD to predict total 

agricultural pollutant loads for the different scenarios. The modelling then uses statistical 

relationships derived from loads and observed concentrations to predict changes in 

concentrations under the different modelled scenarios. The QA in this section includes 

comparison of the results against some of the data used in Section 9, plus additional 

validation against river water quality measurements. This is split into four sections: 

• Validation: Comparison of IMP total emissions for nitrate, phosphorus and sediment 

with totals from the ADAS QA (Section 9) and the SEPARATE dataset (Section 

11.2.1).  

• Validation: Comparison of IMP catchment scale emissions for nitrate, phosphorus 

and sediment with modelled values from the SEPARATE dataset (Section 11.2.2)*.  

• Validation: Comparison of IMP derived concentrations for nitrate and phosphorus 

with observed water quality data (NRW Water Framework Directive (WFD) data and 

Harmonised Monitoring Scheme) (Section 11.2.3).  

• Validation: Comparison of IMP WFD status categorisations with NRW allocated WFD 

status5 (Section 11.2.4). 

*Note, for sediment it is only possible to compare against modelled data (section 11.2.2) as 

large uncertainties in predicting and measuring sediment concentrations meant there was no 

comparison against observed monitoring data for sediment (section 11.2.3). 

11.2 Introduction to the modelling 

Nitrate, phosphorus and sediment loads are calculated at the DMU level by linking the 

SFARMOD scalar data for that DMU with the relevant Farmscoper coefficients, accounting 

for the DMU climate zone, soil type and farm type (see Section 9.2 for more detail). The 

same process is applied for farms not modelled by SFARMOD (those < 1 FTE), where 

typical stocking rates and management are used to calculate the scalar data to combine with 

the Farmscoper coefficients. The DMU results can then be aggregated to produce results for 

coarser spatial scales (catchment or national). 

The IMP totals for WFD catchments were calculated by aggregating the DMU outputs within 

each catchment. To calculate total loads for N and P, non-agricultural sources of pollutants 

were accounted for using SEPARATE outputs. The SEPARATE dataset (Zhang et al., 2014; 

 

 

5 This is important as changes in WFD status affect the environmental valuation of scenarios assigned 
in the IMP (see Section Error! Reference source not found.). 
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data available online6) provides estimates of discharged loads of nitrogen, phosphorous and 

fine-grained sediments to rivers in England and Wales from multiple sector sources 

(agricultural and non-agricultural), reported at WFD catchment scale).  

As part of the project which created SEPARATE (Defra project WQ0223), algorithms were 

developed to convert from loads to concentration for N (as 95th percentile) and 

Orthophosphate (OP) (as annual average) in order to validate the SEPARATE outputs. 

These algorithms accounted for dilution, retention and any contributions from groundwater 

and the proportion of the total P load that was soluble (i.e. OP). We used these to calculate 

concentrations from the IMP accumulated total loads. Data for N and P are processed to 

units reflecting the relevant monitoring data: annual average concentration for P and 95th 

percentile for N.  

River sediment concentrations are controlled by event driven inputs and in-river processes 

occurring over a range of timescales, so it is hard to measure average concentrations using 

infrequent grab samples and difficult to predict these from annual average inputs to 

watercourses as predicted by the IMP. Therefore, sediment outputs are calculated only as 

annual average loads, rather than concentrations. 

To assign WFD status for Phosphorus, site specific thresholds provided by NRW were used, 

which are based upon altitude and alkalinity. Phosphorus status can be assessed at multiple 

locations throughout a catchment, whereas the modelling predicts P concentration at the 

most downstream point, thus the most downstream threshold has been used to assign 

status. Nitrate status is based upon EU Nitrate Directive target of 50 mg l-1.  

When considering the scenario impacts predicted by IMP-Farmscoper, the following points 

should be considered: 

• Farms < 1 FTE do not respond to the scenarios, but these contribute between 12% 

(for nitrate) and 25% (for sediment) of the total agricultural load.  

• Data outputs relate to a new long-term average reflecting land use and management 

for the scenario - some measures might change soil P status or soil organic N 

supply, which would respond over a period of 10+ years.  

• There is no accounting for time lags in groundwater catchments, which could be 

particularly important for nitrate.  

• Predicted loads are based on average climate data (1961-1990) (as that is the data 

within Farmscoper v4) and do not reflect variations in weather between years.  

• Changes in water quality are not modelled for lakes, but these may be important for 

recreation and associated businesses in Wales. 

• We should also note that SEPARATE data used here represent pollution for 2010, 

which may introduce some error into calculations of total loads and concentrations.  

 

 

6 https://data.gov.uk/dataset/3e698568-8492-4dfd-aa11-3439d77cd71a/source-apportionment-of-
annual-nutrient-and-sediment-loads-to-rivers-in-england-and-wales-from-the-separate-framework 

https://data.gov.uk/dataset/3e698568-8492-4dfd-aa11-3439d77cd71a/source-apportionment-of-annual-nutrient-and-sediment-loads-to-rivers-in-england-and-wales-from-the-separate-framework
https://data.gov.uk/dataset/3e698568-8492-4dfd-aa11-3439d77cd71a/source-apportionment-of-annual-nutrient-and-sediment-loads-to-rivers-in-england-and-wales-from-the-separate-framework
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11.2.1 Validation: Comparison of IMP total emissions for nitrate, phosphorus and 

sediment with totals from the ADAS QA 

Table 11.1 compares Nitrate-N, Phosphorous and Sediment outputs from the IMP (from both 

SFARMOD and the < 1 FTE farms) with the outputs from ADAS QA of the Farmscoper 

coefficients (as shown in Section 9) and SEPARATE data. IMP totals are lower than, but 

comparatively close to, the ADAS QA values for nitrate and phosphorus (90% and 85% of 

the total respectively), whilst the IMP sediment value is only 66% of the ADAS QA value. 

The IMP sediment totals are also much lower than the SEPARATE values. Sediment 

predictions are very sensitive to soil type, and there is some disagreement between the 

values from the two modelling assessments, with no way to determine which is ‘correct’. 

There will also be differences in the climate data used, which is more important for sediment 

than the other pollutants. It should be noted that this is a comparison between modelled 

outputs, and Table 11.1 is thus indicative of minimal disagreement being introduced at the 

national scale by using agricultural data from SFARMOD compared to that used in the ADAS 

QA (derived from 1km2 June Agricultural Survey). 

Table 11.1 Total modelled annual average agricultural pollutants for of N, P and sediment, for the IMP 
baseline compared to totals from Table 9 1 from the ADAS QA (calculated using the Farmscoper 
coefficients and data derived from ADAS 1km2 agricultural census data for 2014) 

 
Nitrate 
(kt NO3-N) 

Phosphorus 
(kt P) 

Sediment 
(kt)  

IMP: SFARMOD 30.1 0.72 194 

IMP: Farms <1FTE  4.1 0.18 68 

IMP Total 34.2 0.90 262 

ADAS QA 37.6 1.04 393 

SEPARATE 26.3 0.97 479 

11.2.2 Validation: Comparison of IMP catchment scale emissions for nitrate, 

phosphorus and sediment with modelled values from the SEPARATE dataset 

Figures 11.1 to 11.4 use agricultural pollutant data from the IMP and non-agricultural data 

from SEPARATE, compared with the total loads from SEPARATE, as ultimately it is the total 

load from all sectors that determines the impact of any change in the agricultural load and 

any associated change in concentration or WFD status (which are discussed in the following 

sections). 

Figure 11.1 shows there is a reasonable correlation for sediment, but a systematic under 

prediction (although this is to be expected given the differences in Table 11.1). Comparison 

is better for cumulative load (r2= 0.487) than local (r2= 0.004), suggesting that disagreement 

averages out at larger spatial scales. Figure 11.2 suggests there is no obvious spatial 

pattern to the disagreement, although IMP values are slightly higher in the west and lower in 

the east. 

Correlations are much better for nitrate (r2 = 0.71) and phosphorus (r2 = 0.66) as shown in 

Figure 11.3. There are some catchments where IMP loads are much smaller than 

SEPARATE, but even the SEPARATE ones are low so the contribution to errors in the 

national loads or any cost-benefit analysis would be small, and WFD status is unlikely to be 

an issue as concentrations will also be small. As before, performance for accumulated load 

is improved compared to local load predictions since disagreement averages out at larger 
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spatial scales (r2 values for cumulative N and P are 0.95 and 0.82 respectively, plots not 

shown). Figure 11.4 shows the phosphorus loads are often higher in the west of Wales, the 

same as for sediment (and so are a combination of higher particulate P and greater 

mobilisation due to environmental conditions). Differences in nitrate do not always correlate 

with spatial differences in phosphorous and sediment since nitrate losses are more 

dependent upon agricultural inputs than environmental data than is the case for phosphorus 

and sediment. 

 

Figure 11.1 Graphs comparing IMP modelled local (left) and cumulative (right) sediment loads to an 
alternative set of modelled values from SEPARATE. Black lines indicate the 1:1 relationship. Data are 
shown at the WFD catchment scale. Plots are filtered to catchments where IMP has >=70% coverage: 
total number of catchments covered by both IMP & SEPARATE = 422. 
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Figure 11.2. Spatial comaprison of IMP local and cumulative WFD waterbody sediment loads from all 
sectors with values from SEPARATE, to show where disagreements are greatest.  

 

Figure 11.3 Graphs comparing IMP modelled local N (left) and P (right) loads (tons) to modelled 
mitigated loads (tons) from SEPARATE. Graphs display the relationship (with the 1:1 line in black) 
between IMP and SEPARATE. Data are shown at the WFD catchment scale. Plots are filtered to 
catchments where IMP has >=70% coverage: total number of catchments covered by both IMP & 
SEPARATE = 422.  
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Figure 11.1 Maps comparing IMP modelled local N (left) and P (right) loads (tons) to modelled mitigated 
loads (tons) from SEPARATE. Maps display the differences (IMP minus SEPARATE) in N and P loads. 
Data are shown at the WFD catchment scale. 

11.2.3 Validation: Comparison of IMP derived concentrations for nitrate and 

phosphorus with observed water quality data  

Two separate measured datasets of in-stream N and P concentrations were used for 

assessment of predicted concentration at the WFD catchment scale: the Harmonised 

Monitoring Scheme (HMS) and NRW data collected for regulatory purposes. 

For both the HMS and the NRW WFD data, we selected the most downstream monitoring 

point on the main river. The modelled data effectively represents the point where the main 

waterbody flows into the next sub-catchment; some of the disagreement between modelled 

and measured values will reflect the spatial discrepancy between the measurement point 

and the location represented by the modelling (and the corresponding catchment areas).   

NRW WFD data  

These data were taken for the WFD classification interim cycle 2 2017, (data 2014-2016). 

NRW collected the raw data, modified and checked the data for suitability for WFD 

classification. Frequency of sampling over this time period varied, from site to site and 

between N and P - eight samples is the minimum requirement to have confidence to use the 

data for classification. We filtered the available data to sites on the main river with over eight 

samples, within 500m of a river outflow of the catchment, downstream of any tributaries. 

These were deemed appropriate to our analysis since they should be representative of the 

water quality at the outflow of the WFD catchment.  
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Data on OP, and NO3 concentrations (for monitoring sites appropriate to our analysis) were 

available for 54 and 282 catchments respectively. From the NRW dataset, a time-weighted 

average OP concentration was determined for each waterbody by taking the mean of all OP 

measurements for that location. The 95th percentile NO3 concentration was calculated 

taking the value at quantile 0.95 of all NO3 measurements. Note that any measurement 

value indicated by < in the dataset would be halved, which is a standard procedure. 

Note of caution on TON and OP data (NRW): There are potential issues with some of the 

analysis results for TON and orthophosphate in this time frame. NRW considers all Total 

Oxidised Nitrogen (TON) and Orthophosphate (OP) data determined by the “low range” 

method for all freshwater sampling points between the dates of 01/07/2014 and 31/07/2016, 

to be anomalous.  (That is to say the reliability of the above data cannot be guaranteed, due 

to the perception that environmental levels were not themselves increased during that 

period). 

HMS (Harmonised Monitoring Scheme) data 

The HMS dataset was established to provide an archive of water quality data UK-wide. This 

is used to provide information for international obligations, including analyses of long-term 

trends and estimating river borne inputs of certain water quality determinants to the sea. The 

data are jointly owned by Natural Resources Wales, Environment Agency, Scottish 

Environmental Protection Agency, and Northern Ireland Agri-Food and Biosciences Institute. 

Data are available for 230 sites across the UK, starting from 1975.The data include long-

term data from a small number of catchments in Wales (35 of those modelled by IMP). Very 

few (4) points were suitable for use in QA once filtered to meet our criteria as per the NRW 

monitoring data. 

Averages were calculated over the most recent available 10 years (2003-2013) of OP & NO3 

concentrations. Note that the frequency of sampling is variable - from 19 to 55 for OP & NO3 

over the 10-year period compared here. 

Results 

Figure 11.5 shows that the IMP modelling does not routinely over or underestimate in-stream 

N concentrations when compared to measured data. The exception to this is WFD 

catchments which were assigned the minimum N concentration of 0.1 mg l-1 in the 

SEPARATE calculations but have much higher values in the monitoring data. Some of this 

under-estimation of concentrations will reflect agricultural pollution from England, which was 

not modelled here. 
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Figure 11.5 Graph comparing modelled cumulative N concentration from IMP outputs with the 
measured data from NRW (n=282) and HMS (n=4). Contains NRW information © Natural Resources 
Wales and database right. All rights reserved. NRW points were filtered to remove erroneous outliers 
(N>110), catchments with very low coverage in IMP (<30%), and catchments where estimates were 
based on < 8 samples. 

The correlation is low for the NRW dataset (r2 = 0.18). This indicates that for any individual 

data point (representing a WFD sub-catchment) there is potentially a large difference, 

reflecting in part the uncertainty in model input data and environmental data at local scales, 

i.e. either SFARMOD is over-predicting manure and pollution inputs in these areas, or 

assuming more intensive land use, or the soils and climate categorisation within Farmscoper 

is not representative of that catchment. However, better performance for local loading when 

compared to SEPARATE data (Figure 11.5) suggests that converting to concentrations is 

responsible for more of the apparent error in the modelled data - the relationships presented 

are not too dissimilar to those achieved in the validation of the SEPARATE outputs, 

reflecting the difficulty in predicting concentrations at the national scale, using nationally 

available datasets and without resorting to local calibration. It is also worth noting that 

measured data will also contain sources of error, and are not a perfect representation of 

average concentrations, since they are based on intermittent sampling and may miss 

important peaks in pollution associated with episodic nutrient inputs or precipitation events.  

As per nitrate, the correlation for OP (Figure 11.6) is low for the NRW dataset (r2 = 0.31). 

Unlike for nitrate, where the model struggled with low concentrations, for OP the modelling 

tends to over-predict at low concentrations. However, errors at low concentrations are not 

important when considering the valuation of any scenario impacts as such catchments will 

more than likely already be at Good or High status (see next section). 
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Figure 11.6 Graph comparing modelled cumulative P concentration from IMP outputs with the 
measured data from NRW (n=54 ) and HMS (n=4 ) Contains Natural Resources Wales information © 
Natural Resources Wales and database right. All rights reserved. NRW points were filtered to remove 
catchments with very low coverage in IMP (<30%), and catchments where estimates were based on < 
8 samples. 

Comparison of the spatial distribution of N concentrations is shown in Figure 11.7. This 

shows that most of the IMP over-prediction occurs in the southwest and so may be 

associated with the high dairy stocking values shown in Table 9.5. A lot of the highest NRW 

data (which will include some of the data along the x-axis in Figure 11.5) are isolated 

catchments. This suggests that there may be other factors associated with the monitoring 

data that may influence interpretation such as: 

i) Sampling being targeted at known pollution events; 

ii) There being significant point sources targeted by the monitoring (e.g. a sewage 

treatment works) but not reflected in the SEPARATE data; 

iii) There being significant local agricultural issues (such as pig or poultry farms) not 

captured in the modelling data; or, 

iv) Genuine errors. 
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 Figure 11.7 Maps of modelled N concentration and the measured data from NRW by WFD 
catchment. Contains Natural Resources Wales information © Natural Resources Wales and database 
right. All rights reserved. 

The spatial data for OP (Figure 11.8) shows the much smaller monitoring dataset available, 

and how it is more reflective of central upland catchments where agricultural pressures and 

concentrations are low (plus the Cleddau catchment, where this is not the case). The 

observed data are thus not such a good dataset for the validating the modelled 

concentrations predicted on the northern and coastal parts of Wales that are generally 

higher than the range of the observed data. The major difference in Figure 11.8 is cluster of 

high measurements in the Southeast not reflected in the modelling, which may reflect similar 

issues as per nitrate. 

 

Figure 11.8 Maps of modelled OP concentration and the measured data from NRW by WFD 
catchment. Contains Natural Resources Wales information © Natural Resources Wales and database 
right. All rights reserved. 
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11.2.4 Validation: Comparison of IMP WFD status categorisations with NRW 

allocated WFD status 

WFD status was also assessed for P, as this is subject to the relationship between predicted 

values and thresholds, and any error in WFD status and change in status will affect 

valuations. It is therefore important to note that small discrepancies in modelled N and P 

may be important in terms of status, depending on how close a catchment is to the relevant 

threshold. P status can be characterised as either 'High', 'Good', 'Moderate', 'Poor' or ‘Bad’. 

Unique thresholds exist for each of these categories and for each waterbody. The thresholds 

vary between waterbodies according to altitude and alkalinity.  

The data used in this assessment are as follows: 

P thresholds:  

These were provided by NRW (sent by Dean Rhoden and Rhian Thomas on 21/5/2020) for 

individual sites; the most downstream of these sites within each waterbody was used here. 

WFD P status within the IMP are calculated using these thresholds, to be compared with the 

NRW statuses. Not all catchments had available data to construct these thresholds. It should 

be noted that WFD status is generally calculated by NRW from assessment at monitored 

points, whereas for IMP outputs we have calculated based on the WFD catchment 

accumulated concentration.  

WFD P Status: 

These data are the cycle 2 2018 interim classification, which are subject to similar issues to 

the NRW P data for the 2017 interim classification, namely: Phosphorus data quality 

problems in 2015-16, which meant some P data from this period were excluded for the 2018 

classification. This led to instances where the previous classification result is retained in the 

2018 dataset. Consequently, much of this data reflects the 2015 classification, which would 

have used data collected between 2011-2014. This problem applies to about three-quarters 

of river water bodies in the 2018 classification. It does not affect water bodies where we 

used the more sensitive P method (mainly water bodies with lower nutrient concentrations). 

Not all catchments had an NRW assessed status available, due to insufficient monitoring 

points. The data are available online from NRW.7 

Many catchments were incorrectly predicted by >1 class (98 were >1 class worse, and 18 

were >1 class better), and this may reflect the difference in methodology for assigning 

status, as much as disagreements in P concentration. The discrepancy will affect valuation 

of change in WFD status; since we tend to predict worse status. We may, for example, 

model change from poor to moderate, which would be measured as a change from 

moderate to good. This matters as changes between different statuses are valued differently 

within the valuation model (see Metcalf et al., 2012 “NWEBS”, also Section 14.1.1): in 

general an uplift from moderate to good is the highest value, and bad to poor is the lowest 

value.  

 

 

7 https://waterwatchwales.naturalresourceswales.gov.uk/en/ 
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Additionally, a modelled improvement in status for an IMP scenario, may represent only 

change in concentration in-stream (i.e. improvement without crossing status thresholds). The 

spatial pattern of disagreement shown in the maps below broadly follows that seen for P 

concentration. We should note that worse status is predicted by IMP in upland areas whilst 

more WFD catchments in the northeast of Wales are predicted to have better status than 

suggested by the WFD interim classification. 

Figure 11.9 Map of baseline WFD P status produced by IMP, using thresholds from data provided by 

NRW to produce status from OP concentration (note: none of the Baseline model results breached 

the Poor/Bad threshold, hence, no waterbodies are displayed as ‘Bad’ here). Contains Natural 

Resources Wales information © Natural Resources Wales and database right. All rights reserved 

Figure 11.10 Maps of discrepancy in baseline WFD P status produced by IMP, in comparison to NRW 

assigned P statuses for the 2018 Cycle 2 WFD classification cycle (Note: P statuses are assigned by 

NRW for 628 of the catchments, hence, some catchments are displayed as “<Null>”). Contains 

Natural Resources Wales information © Natural Resources Wales and database right. All rights 

reserved 
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12 Air Quality & Health - MetaEMEP4UK 

Authors: Alice Fitch, Laurence Jones, Janice Scheffler, Edward Carnell and Massimo Vieno  

12.1 Introduction to the model QA 

The Meta-EMEP4UK calculations assess the changes in air quality as a result of changes in 

land use affecting woodland area and agricultural ammonia (NH3) emissions higher up the 

modelling chain. This section introduces these models and carries out the following quality 

assurance: 

• Peer Review: EMEP4UK has been extensively published.  

• Validation: Comparison of modelled concentrations from the main EMEP4UK model 

runs compared with AURN daily air quality monitoring data. 

• Validation: QA of Meta-EMEP4UK and comparison of results to previous modelling of 

air pollution removal by trees for Wales. 

12.2 Introduction to the modelling 

Changes in air quality as a result of land use management and land use change were 

calculated using the meta-model Meta-EMEP4UK. This predicts the change in PM2.5 

concentration at a grid cell level (approx. 5 x 5 km), resulting from changes in land use in a 

given scenario compared with the baseline. Inputs required for this calculation are the 

change in NH3 emissions, current PM2.5 levels, and the area of new (or felled) woodland 

within a 40 x 40 km grid (here interpreted as a 9x9 cell grid) calculated as a proportion of the 

total 9x9 cell grid.   

To create the meta-model a series of model runs were made using the atmospheric 

chemistry transport model EMEP4UK (Vieno et al., 2016). This involved running two 

scenarios: a bespoke land use change and emissions change scenario (SCENARIO) was 

constructed which incorporated different combinations of the full range of variation in 

ammonia emissions and woodland planting likely to occur under any of the land use and 

management scenarios envisaged under policy change. The scenario was constructed using 

the entire UK to provide greater opportunity to incorporate variation in background PM2.5 

concentrations and other atmospheric chemistry and meteorological variables required for 

EMEP4UK, as well as random and independent variation in ammonia emissions and 

woodland area within pre-specified ranges at the required scale of 40 x 40 km. A baseline 

scenario (BASELINE) with the current pattern of ammonia emissions, woodland and other 

land covers was also run. Both scenarios were run with 2015 emissions and 2015 

meteorology. EMEP4UK uses WRF version 3.7.1 as its meteorological input, using hourly 

3D meteorological data.  

The parameters for the meta-model were calculated by comparing SCENARIO and 

BASELINE runs in EMEP4UK. The statistical meta-model calculates the change in PM2.5 

concentrations as a function of change in ammonia emissions, change in woodland cover 

and background PM2.5 concentrations. The model structure was constrained by adjusting 

the intercept in order to ensure that modelled PM2.5 concentrations did not change if there 

was no change in woodland and no change in ammonia concentrations. 

The resulting meta-model equation (adjusted R2 = 40.7%) is: 
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Meta-EMEP4UK = [-0.20409]+(-0.18950*(Change in frac of woodland within 9x9 cell window 

* baseline PM2.5)) + (0.000003*Change in NH3 emissions) 

Meta-EMEP4UK directly calculates a change in pollutant (PM2.5) concentrations as a result 

of changes in the input parameters. The change in PM2.5 concentration is population-

weighted to give an estimate of the change in exposure of the population to air pollutants 

known to be damaging to human health. The change in exposure is converted to health 

impact metrics using response functions derived from COMEAP (Committee on the Medical 

Effect of Air Pollutants) 2010 and Atkinson et al. (2014); compiled by independent experts for 

governmental use on the impact of PM2.5 on respiratory hospital admissions, cardiovascular 

hospital admissions, Loss of Life Years, and the health costs associated with these. 

Population data used within these calculations are from the UK Office of National Statistics 

2011 census. Health impacts are calculated as a proportional change in health outcome 

based on existing mortality and morbidity data by local authority. From these health impacts, 

an economic value is estimated (see Jones et al., 2019 for a full description).  

To run Meta-EMEP4UK, the aggregated change in ammonia emissions and woodland 

proportion were calculated at a 40 x 40 km grid as inputs. All calculations on changes in 

PM2.5 concentration were output at this grid resolution, and then combined with population 

data for estimation of population-weighted change in exposure at Local Authority level. 

Subsequent calculation of health outcomes and economic value were conducted for each 

Local Authority. 

12.2.1 Peer review: EMEP4UK 

EMEP4UK is an established atmospheric chemistry transport model used for a range of air 

quality modelling applications. The original EMEP model is described in Simpson et al. 

(2012). The enhanced UK parameterisation in EMEP4UK is described in Vieno et al. (2016). 

12.2.2 Validation: Comparison of modelled concentrations from the main EMEP4UK 

model runs compared with AURN daily air quality monitoring data 

In this section we describe the validation of the main EMEP4UK model runs which were 

used to create the meta-model for this project (Meta-EMEP4UK). Validation is reported for 

the baseline run of EMEP4UK which used 2015 UK vegetation and emissions. 

Daily air pollution concentrations for O3, NO2, PM10 and PM2.5 from the BASELINE run 

were evaluated against the 2015 AURN daily air quality monitoring network data (full report 

available on request). An example for Cardiff Centre is shown in Figure 12.1, which shows 

good agreement of the EMEP4UK outputs compared with measured data at the Cardiff 

monitoring site.  

For each EMEP4UK model run, QA checks of emissions, surface concentration budgets, 

surface concentration plots, and wet and dry deposition were undertaken and compiled into 

a QAQC document. Also stated are the difference in configuration files of the BASELINE and 

SCENARIO runs, and whether any warnings were raised. The concentration plots (e.g. 

Figure 12.2) allow sense-checking of the concentration levels and the spatial pattern of 

changes under each scenario which, combined with the validation against individual air 

quality monitoring locations described above, allows a more detailed QA assessment of the 

outputs. Selected EMEP4UK model outputs and input data for the meta-model are shown in 
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Figure 12.2. BASELINE ammonia and PM2.5 concentrations closely match other modelled 

interpolated concentration fields for these pollutants for 2015. 

  

Figure 12.1 Modelled concentrations from the BASELINE run of EMEP4UK (blue lines EMEP4UK) 
compared with AURN daily monitoring data for Cardiff Centre (orange lines). 

 

Figure 12.2 Composite panels show a) ammonia concentrations in the EMEP4UK BASELINE and 
SCENARIO runs, and the absolute and percentage difference between the two, b) PM2.5 
concentrations in the EMEP4UK BASELINE and SCENARIO runs, and the absolute and percentage 
difference between the two. 
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Separately, the model outputs can be compared against expected findings from the 

literature, for example in Figure 12.3. This shows that the decrease in PM2.5 concentrations 

is greatest at high initial PM2.5 concentrations and where there is the largest increase in 

new woodland. Changes in PM2.5 due to increases or decreases in ammonia emissions are 

proportional to the change in ammonia and are largely independent of change in woodland 

area. 

All model outputs are compiled into netCDF with model version, and emission year included 

in the file name. Comprehensive metadata on model run and outputs is included within each 

file as well as in the file naming conventions8. This allows easy tracking of which model 

versions and data sources were used in individual runs, facilitating rapid Quality Assurance if 

results need to be checked. 

12.2.3 Validation: QA of Meta-EMEP4UK and comparison of results to previous 

modelling of air pollution removal by trees for Wales 

In this section we describe the QA processes for the meta-model Meta-EMEP4UK, and 

describe comparison of outputs with previous modelling runs for Wales Natural Capital 

Accounts. 

When running Meta-EMEP4UK, flags are in place to raise warnings if input data are in a 

different format or the wrong units, and intermediate data produced during the process is 

outputted and checked against provided data, e.g. change in NH3. The code to process data 

into the input format needed for Meta-EMEP4UK and the code to calculate population-

weighted pollution concentrations and aggregate Meta-EMEP4UK output have all been 

independently checked for script errors. 

Health outcome and economic estimates from Meta-EMEP4UK were compared with 

previous assessments using different model versions of EMEP4UK to calculate health 

benefits of pollution removal by natural vegetation for the UK Natural Capital Account (Jones 

et al., 2017) and for the Wales Natural Capital Accounts (Engledew et al., 2019) . The 

estimated pollution removal per unit area of woodland was in very close agreement with 

these previous calculations.  

After QA checks conducted on each analysis, the outputs from Meta-EMEP4UK are passed 

onto environmental economists at eftec for subsequent economic analysis. eftec have 

worked with air pollution health associated costs previously, so this ensures an additional 

quality check on output. 

Example results are shown below for different scenarios. These show: calculated change in 

PM2.5 concentration (Figure 12.4), change in health outcomes at local authority level (Figure 

12.5), and the same results in table format showing the numerical estimates (Table 12.1). 

 

 

 

8 An example file name is below, the sections in bold provide run information for version tracking: 
EMEP4UK_emep-ctm-
rv4.34_wrf3.7.1_ERAMMP_{runtype}_trend2015_emiss2015_UK_2015_fullrun.nc .   
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Figure 12.4 Change in PM2.5 concentrations (µg m-3) at 5x5 km grid cell resolution. Purple shows 
increase and green shows a reduction in PM2.5 concentrations. 

 

Figure 12.5 Change in Life Years Lost, at Local Authority level. Green shows a reduction, pink shows 
an increase. 
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Table 12 1 Health costs (in £2012 prices) associated with change in PM2.5 concentrations. 
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13 Carbon modelling - LULUCF methodologies 

Authors: Robert Matthews, Kate Beauchamp and Amy Thomas  

13.1  Introduction to the model QA 

The carbon ecosystem services models provide outputs on LULUCF carbon stock and 

change, using the relationships between land use and soil types as well as outputs from 

ESC and CARBINE (Section 4). Emissions of GHG from peat (or wetlands) are also 

calculated, using predicted land cover. This section introduces the modelling and the quality 

assurance steps taken, which are, in brief: 

• Building Understanding: Presenting the LULUCF stocks at baseline. 

• Validation: Comparison of modelled agricultural carbon stock with published data 

(section 13.2.2). 

• Validation: Comparison of baseline wetland emissions outputs with published data 

(section 13.2.3). 

• Expert Assessment (Consortium): Understanding woodland carbon change in an 

example land use scenario (13.2.4). 

• Expert Assessment (Consortium): Understanding wetland GHG emissions in an 

example land use scenario (13.2.5). 

• Expert Assessment (Consortium): Understanding agricultural land carbon change in 

an example land use scenario (13.2.6). 

13.2 Introduction to the model 

For agricultural land, carbon stocks in soils and biomass are calculated using LULUCF 

coefficients for Wales. For soils, these represent soil carbon in the top 1m according to 

relationships between land use and soil types (organic, organomineral, mineral, other). For 

biomass, coefficients vary with land use but not soil type. 

For scenarios of land use change, time series data are required for valuation purposes since 

carbon price varies over time. Annual changes in carbon stock in agricultural systems were 

accounted for using LULUCF methods, assuming a non-linear rate of change and that some 

transitions occur more slowly than others. For example, for conversion of grassland to 

arable, losses of carbon stock are initially high and decrease exponentially over time.   

The equation for annual change is ft = k(Cf - C0)e-kt 

where t = time; k = time constant of change; Cf = assumed equilibrium carbon density for 

new land use; C0 = assumed equilibrium carbon density for baseline land use.  

Example rates of change in soil carbon stock are shown in Figure 13.1. 
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Figure 13.1 Example rates of soil carbon stock change over time for different land use transitions. 

Carbon stock and change are calculated at the spatial resolution of the DMU. Note that 

because each DMU is a composite of land use, the method represents change between 

composites. 

Vegetation biomass change is assumed to occur in year one. The rate of woodland carbon 

change is valued using data from the ESC and CARBINE models described in Section 4, 

applying rates averaged over the three time periods for simplicity. Rotational 

grassland/arable is assigned the same soil carbon stock as arable, due to assumed frequent 

soil disturbance. Note that the magnitude of change is small relative to total stock in 

vegetation and the top 1m of soil. 

For peat, GHG emissions are calculated using an approach aligned with planned future 

inventory methods. Coefficients are derived from the draft wetland supplement (Evans et al., 

2017) to align with LULUCF inventory methods and are therefore not directly based on 

modelled nutrient inputs (which will affect N2O emissions from peat soils). These coefficients 

are used to model baseline and scenario emissions based on the simulated land use from 

SFARMOD and the LAM (see section 10). For the land use scenarios, we assume emissions 

from land reach an equilibrium immediately following instantaneous land use change in 

2020, whereas in reality it may take around 30 years for vegetation assemblages to 

converge with reference states. Conversely, the water table may recover relatively quickly, 

and a large proportion of emissions from improved land reflect N2O from nutrient inputs, 

which should respond much more rapidly. For scenarios of woodland creation, it is assumed 

that new woodland cannot be planted on peat, and the peat portion of any field that is 

replanted to woodland will revert to short vegetation. 

Agricultural GHG emissions are calculated at the DMU level by combining each of the 

SFARMOD loading outputs (for fertiliser input, livestock excreta and land use areas) with the 

relevant Farmscoper coefficient, accounting for the climate zone, soil type and farm type. 

Changes are assumed to take place immediately. 
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13.2.1 Building Understanding: Presenting the LULUCF stocks at baseline  

Baseline agricultural carbon stocks in soils and vegetation are predicted at the DMU 

resolution, using LULUCF coefficients as outlined in Section 13.2. The data are aggregated 

to NRW regions and small agricultural area for mapping as tonnes per hectare of modelled 

land (see Figure 13.2). Totals for Wales are shown in Table 13.1; these are compared to 

other available data in section 13.2.2. 

 

 Figure 13.2 Baseline LULUCF carbon stock, mapped by NRW region (left) and small agricultural area 
(right). 

 

Table 13.1 IMP modelled totals of agricultural stocks of carbon in soils and biomass. 

Indicator Total for Wales 

Total soil C (kt) 170,537 

Total biomass C (kt) 2,862 

Total area (ha) 937,522 

Average soil C density (t/ha) 182 

 

13.2.2 Validation: Comparison of modelled agricultural carbon stock with published, 

inventory aligned data  

LULUCF soil stock data and soils and carbon from the LULUCF inventory have been used to 

QA the modelled carbon stock outputs. These provide national level totals with habitat type 

breakdown and are derived from measured data published in Bradley and Milne (2005). The 

LULUCF inventory coefficients derived from this work are the same as those applied in the 

IMP modelling, therefore this step tests the implementation of the coefficients. Table 13.2 

and Table 13.3 show discrepancy for totals and per hectare values. 
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Table 13.2 Difference in Wales soil carbon stock 0-100 (Kt C) (shown as LULUCF minus IMP). 

 
Arable Pasture Natural Not 

modelled 

Total Total 

modelled 

Mineral 17,525.8 -56,678.0 -7,612.4 -22,484.4 -69,249.1 -46,764.6 

Organic 484.3 -3,690.6 -25,365.4 -11,719.7 -40,291.5 -28,571.8 

Organo-

mineral 

1,268.2 -8,672.6 -11,355.5 -10,490.0 -29,249.9 -18,759.9 

Other -838.2 -16,081.7 -9,421.8 -3,976.3 -30,318.1 -26,341.7 

ZERO 0.0 0.0 0.0 0.0 0.0 0.0 

ALL 18,440.1 -85,122.9 -53,755.2 -48,670.5 -169,108.5 -120,438.0 

Table 13.3 Difference in land use area values for Wales (km2) (shown as LULUCF minus IMP). 

 
Arable Pasture Natural Not 

modelled 

Total Total 

modelled 

Mineral 1,439.7 -3,496.7 -430.6 -1,724.1 -4,211.7 -2,487.6 

Organic 5.1 -45.9 -283.6 -105.8 -430.3 -324.5 

Organo-

mineral 79.4 -543.4 -606.9 -576.3 -1,647.2 -1,070.9 

Other -167.1 -2,816.4 -1,115.7 -694.9 -4,794.1 -4,099.2 

ZERO -16.5 -104.1 -138.9 -685.7 -945.1 -259.4 

ALL 1,340.7 -7,006.5 -2,575.7 -3,786.9 -12,028.4 -8,241.5 

The main discrepancies between the datasets can be summarised as follows: 

• There is an over-estimation of arable stocks and area, and under-estimation for 

pasture. This may be partly due to arable and rotational grass being combined in the 

IMP modelling, with possible contributions from increases in arable area since 2005. 

There will also be a significant area of grassland in Wales that is not part of a farm 

modelled by IMP (as also seen in Table 9-5).   

• There is an under-estimation of the area of natural land (and associated carbon), 

which largely reflects the fact that much of the land in the “natural” category is not on 

farms modelled by the IMP. 

The tables below indicate that the soil carbon discrepancies (Table 13.4) are in line with the 

coefficients used (Table 13.5), with minor (<0.5 kt/km2) disagreements reflecting rounding 

errors. Therefore, the disagreement between IMP outputs and the inventory data reflects 

differences in area assigned to each land use, and there are no identified issues with the 

implementation of coefficients. 

Table 13.4 IMP coefficients (as kt/km2) from LULUCF. 
 

Arable Natural Pasture 

Mineral 12.2 17.6 16.2 

Organic 95.1 89.6 80.7 

Organo-mineral 15.8 18.7 16.1 

Other 4.9 8.4 5.7 
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Table 13.1 Density of discrepancy as (kt/km2). 

 
Arable Natural Pasture 

Mineral 12.2 17.7 16.2 

Organic 95.4 89.4 80.3 

Organo-mineral 16.0 18.7 16.0 

Other 5.0 8.4 5.7 

13.2.3 Validation: Comparison of baseline Wetland GHG emissions with wetland 

coefficients from published, inventory aligned data  

To QA the wetland emissions outputs, the baseline outputs were checked against the 

wetland coefficients being applied in the IMP modelling, thereby testing the implementation 

of the coefficients. Wetland coefficients were taken from the emissions inventory wetland 

supplement (Evans et al., 2017, Table 4.1). Figure 13.3 indicates a consistent relationship 

between area and modelled emissions, and Table 13.6 shows that the mean of this 

relationship matches the coefficient for the relevant land use type, indicating that the 

coefficients have been implemented correctly.  

  

Figure 13.3 Baseline modelled wetland GHG emissions as tCO2 equivalents, plotted at the DMU 
level, as 4 scatterplots split by land use type, plotted against the area (ha) of peat modelled on that 
land use. 
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Table 13.6 Comparison of baseline modelled wetland GHG emissions per hectare with the wetland 
coefficients implemented within the IMP to verify the coefficients were correctly used. 

Land use Mean of modelled 
baseline emissions per 
estimated ha of land use 
on peat 

Coefficients 
implemented in the IMP 

Cropland 38.98 38.98 

Unimproved grass 19.02 19.02 

Improved grass 29.89 29.89 

Woodland 9.91 9.91 

13.2.4 Expert Assessment (Consortium): Understanding woodland carbon change in 

an example land use scenario 

Modelled carbon sequestration in woodland was assessed for an example scenario to 

sense-check the data. The CARBINE and ESC data have been re-aggregated to the DMU 

level as described in section 4.2.8, then adjusted in post-processing to better represent the 

time periods. These were then incorporated within the LULUCF carbon modelling. It was 

therefore important to check that the data outputs being used in the scenarios were sensible, 

in case of errors in processing and implementation. Woodland carbon sequestration rates 

vary with existing land cover, soils, climate and other site factors; hence, the figures 

displayed are specific to the spatial pattern of woodland creation/regeneration simulated for 

the example scenario (T1).  

The rates of carbon change over time in the data shown in Table 13.7 and Figure 13.4 follow 

the expected patterns. For the first 5 years, managed systems (native broadleaf and 

productive conifer) may be expected to be net emitters (hence positive values for 2020-2025 

in Table 13.7), due to disturbance of soils, loss of baseline vegetation and slow vegetation 

growth. From 2025-2050, net sequestration is modelled as the system becomes established. 

This sequestration rate slows from 2050-2100. 

Natural revegetation to mixed forest was predicted to sequester carbon in soils during 2020-

2025 and 2025-2050, where it takes place on arable land (but not on grassland). From 2050-

2100, sequestration is modelled as the system becomes established; it is expected that 

there is a delay in the timing of this sequestration relative to managed woodland. 

Table 13.7 Change in carbon for each woodland type represented in the T1 scenario, provided as 
average netLULUCF_CO2eq/ha/yr, accounting for change in soils and vegetation, and in the case of 
managed woodland, harvested wood products and GHG emissions from management. 

 
2020-2025 2025-2050 2050-2100 

Natural revegetation 
to mixed forest 

-0.05 -0.05 -5.44 

Native broadleaf 3.82 -7.24 -4.40 

Productive conifer 3.45 -17.39 -3.48 
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Figure 13.4 The modelled carbon stock change as tCO2 equivalents per hectare, plotted as the 
annual mean for each modelled woodland type (data from table 13.7). 

Figure 13.5 shows the range of modelled values within each woodland type and highlights 

the contribution from harvested wood products (HWP). The range reflects differences in soil 

type, baseline land cover, climate and other parameters, which affect the CARBINE and 

ESC predictions of carbon sequestration rates. Overall, the greatest magnitude and range in 

sequestration rates was modelled from 2025 to 2050, and these are generally greatest for 

areas planted to conifer, although the range overlaps with the range for broadleaf. The 

breakdown to separate HWP indicates that they are only responsible for a relatively small 

proportion of modelled sequestration, with the exception of outliers for conifers in the 2050-

2100 time period. 

(i) 
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(ii) 

 

 

 

 

 

 

 

 

 

 

 

(iii) 

 

 

 

 

 

 

 

 

 

 

Figure 13.5 Box and whisker plots of T1 modelled carbon stock change as tCO2 equivalents per 
hectare per year, for each modelled woodland type. Plots are shown for each of our three modelled 
time periods, and display data for (i) total net change (to explore the range of data shown in Table 
12.7 and Figure 12.3) and then a breakdown to show contribution from (ii) trees, soil and forest 
operations and (iii) harvested wood products (HWP). Boxplots show the median value (dark horizontal 
line) relative to the interquartile range (between first and third quartiles, shown as shaded area), range 
of data (dashed vertical line with horizontal lines for highest and lowest values) with outliers also 
shown as dots. 
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13.2.5 Expert Assessment (Consortium): Understanding wetland GHG emissions in 

an example land use scenario 

The modelled change in wetland GHG emissions were assessed for an example scenario 

(T1) to sense-check the implementation of the coefficients. Table 13.8 shows that the 

emissions per hectare of peat match the coefficient for the relevant land use type, indicating 

that the coefficients have been implemented correctly.  

Table 13.8 Comparison of T1 modelled wetland GHG emissions per hectare with the wetland 
coefficients implemented within the IMP. 

Land use Mean of modelled T1 
emissions per estimated 
ha of land use on peat 

Coefficients 
implemented within the 
IMP 

Cropland 38.98 38.98 

Unimproved grass 19.02 19.02 

Improved grass 29.89 29.89 

Woodland 9.91 9.91 

13.2.6 Expert Assessment (Consortium): Understanding agricultural land carbon 

change in an example land use scenario  

The modelled carbon sequestration in agricultural land was assessed for an example 

scenario (T1) to check the implementation of the LULUCF methodology for change in carbon 

stocks over time. Annual average sequestration rates are shown in Figure 13-6, with 

negative values indicating sequestration (as per LULUCF convention). The plot on the left 

shows that for the creation of shrub grassland, large sequestration is simulated in the first 

year. The rate of sequestration is much lower from year 2, and further decreases over the 

modelled 80 years. This is in line with our expectations: the relatively large changes in 

biomass carbon are modelled as taking place in the first year (as per LULUCF standard 

approach for non-woodland), and the average changes in soils were smaller, decreasing 

over time as expected. The plot on the right shows net emissions for land staying in 

agriculture in the T1 scenario, which are greatest in year 1, exponentially decreasing over 

the modelled time period. This is in line with our expectations, since the trend for land 

staying in agriculture is dominated by transitions from permanent to rotational grassland, 

which would be expected to result in an exponential rate of soil carbon loss. 

Figure 13.7 shows the difference in carbon stock between 2020 and 2100. The data conform 

to our expectations; in general, more carbon is sequestered for new woodland and is emitted 

for land remaining in agricultural use. Land becoming shrub grass might be expected to 

always sequester carbon; however, the data show that sometimes less carbon is 

sequestered. This reflects the coefficients applied from LULUCF, which indicate the highest 

carbon stocks for organic soil managed as arable. This is because of spatial patterns in the 

baseline data that may not always be representative for all transitions, which is a limitation of 

a space for time approach. The overall pattern is likely to be similar across scenarios, with 

variation reflecting the different areas undergoing different transitions. 
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Figure 13.6 Modelled carbon stock change as tCO2 equivalents per hectare, for land converting from 
agricultural use to short vegetation (left), and land staying in agriculture (right) for an example 
scenario (T1). Both plots are the mean of all sites in that category. 

 

 Figure 13.7 Modelled carbon stock change between 2020 and 2100 under an example scenario (T1). 
Negative values represent net sequestration. The values for mixed_forest, nat_broadleaf and 
prod_conifer are the same as in Figure 13-5, but are included here for comparison. 

Table 13.9 and Figure 13.8 allow comparison of T1 modelled outputs with the LULUCF 

coefficients. Model outputs can only be split into “farmed” and “short vegetation” (i.e. farmed 

DMUs cannot be split into the land use types represented by the coefficients). This is 

because each DMU has a mix of land cover types, which transitions to a new mix of land 

cover types. Carbon stock for the scenario land cover mix is modelled based on change from 

the baseline land cover mix at the DMU level. In order to model change without knowing the 

spatial pattern within the DMU it is necessary to model for the aggregated DMU, across the 
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relevant mix of land use types. Therefore, scenario carbon stock is only known for the 

aggregated DMU. Table 13.9 shows that the average model outputs are within the expected 

range for the coefficients. The T1 outputs for “short veg” match the coefficients, with minor 

(<0.1 kt C /km2) disagreements which may reflect rounding errors or potentially land having 

not quite reached equilibrium. The T1 outputs for farmed DMUs fall within the range covered 

by arable, rough grass and pasture. Figure 13-8 shows that the range of output values for 

the farmed DMUs in the T1 scenario also fall within the coefficient range in Table 13.9 (short 

vegetation DMUs have consistent carbon stock for each soil type), this indicates appropriate 

implementation of the coefficients for the scenario. 

Table 13.9 LULUCF coefficients for carbon stock in soils and vegetation, compared to the modelled 
mean stocks for 2100 (these are calculated using LULUCF methods to model change from baseline).  
Coefficients are split by soil type and land use, whereas the T1 modelled outputs are split by soil type 
and then into farmed and short vegetation, since each DMU has a mix of land use.  

  Coefficients kt C /km2 T1 output mean kt C 
/km2 2100 

Arable Rough 
grass 

Pasture Short veg Farmed Short veg 

Mineral 12.70 17.91 16.48 18.63 14.33 18.47 

Organic 95.60 89.91 80.96 90.63 89.72 90.53 

Organo-
Mineral 

16.30 19.00 16.39 19.72 18.51 19.67 

Other 5.40 8.73 5.98 9.45  9.45 

 

 

 

 

 

 

 

Figure 13.8 The ranges of modelled carbon stock for 2100 by land use (Farmed and Short 

vegetation) and soil type (other (O), mineral, organic and organomineral) combinations. 
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14 Valuation  

Authors: Ian Dicke, Amy Thomas and Sophie Neupauer 

14.1 Introduction to the model QA 

Valuation takes the outputs from the ecosystem service models and uses best available 

information to provide monetary values to go alongside the physical indicators modelled. The 

QA steps taken are detailed in the section below. 

14.1.1 Expert Assessment/ Peer Review: Setting out the approach to Quality 

Assurance within the valuation modelling using best available valuation 

evidence 

This step of the analysis provides valuation results as part of the IMP outputs. The approach 

taken is summarised using the best available valuation evidence from UK public sector 

sources. The quality assurance steps that have been applied are described in the HM 

Treasury Aqua Book (HM Treasury, 2015), which provides guidance on producing quality 

analysis for government.  

Three ecosystem services, greenhouse gas sequestration, water quality and air quality, are 

valued based on the outputs from preceding steps in the IMP. A description of the models 

used to determine the value of each of the ecosystem services, and the assumptions made 

during each, are outlined below. 

Greenhouse gas sequestration: 

• The ecosystem services modelling provides peat GHG tCO2e/yr, net LULUCF 

tCO2e/yr and baseline/scenario non-peat GHG tCO2e/yr for six Welsh regions.  

• Each tCO2e is valued based on relevant annual values from the BEIS (2019) 

valuation of energy use and greenhouse gas emissions for appraisal. The document 

containing these values (data tables 1 to 19: supporting the toolkit and the guidance) 

are available at https://www.gov.uk/government/publications/valuation-of-energy-use-

and-greenhouse-gas-emissions-for-appraisal. 

• The models assume that the rate of tCO2e change for agriculture and wetlands 

remains constant over the time period. This means the timing of impacts cannot be 

determined from scenario definitions that are input to the modelling process. 

Water quality: 

• The ecosystem services modelling provides baseline and scenario 

status/concentration for N and P in Welsh waterbodies, disaggregated at the 

waterbody level. The IMP also provides the proportion of each waterbody for six 

Welsh regions. 

• Changes in waterbody status are valued using Metcalfe (2012) and NERA Economic 

Consulting (2007) “The benefits of Water Framework Directive Programmes of 

Measures in England and Wales” (“NWEBS”).  

• Estimates are based on a sixth of the central NWEBS values, which are the best 

estimates of willingness-to-pay (WTP) for changes in waterbody status. The analysis 
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of water quality only looks at one of the six components of waterbody status, 

therefore taking 1/6th of the value. 

• In cases where the waterbody status changes by more than one step in status (e.g. 

from high to bad), NWEBS values for each individual change are added (e.g. for 

waterbodies changing from moderate to bad, we add the value of moderate to poor, 

and poor to bad). 

• Changes in water quality status are assumed to be immediate. 

• The valuation assumes that the willingness-to-pay for a deterioration in water quality 

status (i.e. from good to moderate) is the same as the willingness-to-pay for an 

improvement in water quality status (i.e. moderate to good). 

Air quality model: 

• The ecosystem services modelling provides the annual volume and monetary value 

of air pollutant emissions and removals by local authorities in Wales.  

• In terms of the timings, a third of the PM2.5 value is due to changes in NH3 

emissions - this change is assumed to occur in year 0 and remain constant over the 

time period. Two thirds of the value is due to tree planting - the full value of tree 

planting is achieved after 40 years and, based on expert judgement, is assumed to 

linearly increase from year 0. 

All models: 

• All monetary valuations are aligned to methods in HM Treasury (2018) The Green 

Book, which is available at https://www.gov.uk/government/publications/the-green-

book-appraisal-and-evaluation-in-central-governent. Values were converted to 

current prices using HM Treasury (2020) GDP deflators at market prices, and money 

GDP; available at https://www.gov.uk/government/collections/gdp-deflators-at-

market-prices-and-money-gdp. 

Table 14.1 Record of Quality assurance compliance. 

Quality assurance Record of compliance 

Ensure version control Version numbers are included in cover tab. 

Document recording date/time raw data is received for data used 

in the final model.  

Analysist self-checks Confirmation that the analyst conducted self-checks during model 

development (including checking sum-totals, spot checking 

results, checking patterns in physical and monetary results). 

Quality assurance 

guidelines in place 

Confirmation that the quality assurance guidelines have been 

followed, including documenting key assumptions, logging 

comments by reviewers and following the general guidance.  

Periodic reviews 

occurred 

Confirmation that periodic reviews occurred throughout the 

modelling process.  

Results are also reviewed in conjunction with other modelling 

results in the IMP for expected changed (e.g. reductions in 

livestock lead to decreases in GHG emission and water 

pollution).  

Internal peer review An internal peer review has been completed. 
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15 Concluding remarks 

Within the land use scenario analysis the ERAMMP IMP simulates the potential effects of 

changes in farm gate prices on agriculture, land use and the natural environment in Wales. 

The nature of decision-making around these areas is inherently complex due to the range of 

interdependencies between different drivers, sectors, and the varied actors within them. The 

IMP’s integrated approach recognises that drivers or policies in one sector may have 

consequences or effects in others. Despite efforts to represent these complex relationships 

and interdependencies, all models, by necessity, are a simplification of reality, but can still 

provide very useful insights if applied for a specific purpose and with caution. In this case, 

the IMP has been designed to support policy decision-making that will have real-world 

impacts. It is therefore essential that the model outputs are critically evaluated if they are to 

be used with genuine understanding and confidence. QA provides the critical reflection 

needed. This document has reported the key QA issues for each model within the IMP 

chain as well as for key areas of intersection between models. Newly developed 

models (e.g. the LAM) have undergone additional scrutiny and sensitivity analysis. 

As the IMP supports the development of core elements of government policy, it is 

designated as business critical and as such is mandated by the UK Government’s Review of 

quality assurance of government analytical models9 and Aqua Book10 . For successful QA, 

there must be both a modelling environment that creates conditions in which QA processes 

can operate effectively and clear process for every stage of the model life-cycle. An 

environment and the processes that foster effective QA are delivered through compliance 

with the four Aqua Book principles of analytical QA: 

• Proportionality of response: The extent of the analytical quality assurance effort 

should be proportionate in response to the risks associated with the intended use of 

the analysis.  

• Assurance throughout development: Quality assurance considerations should be 

considered throughout the life cycle of the analysis and not just at the end.  

• Analysis with RIGOUR: Quality analysis needs to be Repeatable, Independent, 

Grounded in reality, Objective, have understood and managed Uncertainty, and the 

results should address the initial question Robustly.  

• Verification and validation: Analytical quality assurance is more than checking that 

the analysis is error-free and satisfies its specification (verification). It must also 

include checks that the analysis is fit for the purpose for which it is being used 

(validation). 

This document has sets out how the ERAMMP IMP team have addressed the requirements 

of the Review of quality assurance of government analytical models and Aqua Book.  

 

 

9 Review of quality assurance of government models, 
https://www.gov.uk/government/publications/review-of-quality-assurance-of-government-models 
10 The Aqua Book: Guidance on producing quality analysis for government 
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/41
6478/aqua_book_final_web.pdf 

https://www.gov.uk/government/publications/review-of-quality-assurance-of-government-models
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/416478/aqua_book_final_web.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/416478/aqua_book_final_web.pdf
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• The ERAMMP IMP was developed following the principles of co-creation, taking an 

iterative approach that involved the modelling consortium and government experts 

throughout.  

• The principles of RIGOUR were strictly adhered to with all assumptions underlying 

the modelling approach agreed, transparently documented and signed-off by an SRO 

within Welsh Government following a multi-stage iterative discussion (see Annex 1 

for the assumptions document). 

• In addition, modelling teams employed a range of appropriate methods for quality 

assurance, including validation, sensitivity analysis, contextualisation, and 

interpretation, and detailing historical peer review (summarised in this document as 

technical annex 2). 

15.1 Addressing RIGOUR 

Core to the Aqua Book are the RIGOUR principles of the work being Repeatable, 

Independent, Grounded in reality, Objective, have understood and managed Uncertainty, 

and the results should address the initial question Robustly. The following section 

summarises how the QA of the IMP has addressed these principles throughout the project. 

Repeatability: 

For an analytical process to be considered valid, it is reasonable to expect that when using 

the same inputs and constraints, the analysis will produce the same output.  

• All assumptions and settings for key parameters, have been transparently 

documented. 

• An auditable record of data passes between models for each scenario was kept 

using a unique identifier for each model, input and output.  

• Each model was independently verified by an expert modelling team to ensure 

correct implementation and application.  

Independent: 

Analysis should be free of prejudice or bias and in doing so, care should be taken to balance 

the views across stakeholders and experts.  

• The IMP was developed using an iterative approach considering a range of different 

perspectives from within the modelling team and across Welsh Government. 

• Consultations and workshops were held with a range of Welsh Government 

representatives and sectoral experts. 

Grounded in reality: 

Connections between the analysis and its real-world consequences must be made by 

challenging the views and perspectives of all stakeholders. In doing so, this encourages the 

context of the problem to be fully understood.  

Where possible, each model component was validated by comparing a baseline scenario 

against appropriate datasets. 
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• The assumptions document was widely circulated within WG to ensure those with 

sectoral expertise could sense-check the assumptions made.  

• Where no real-world value was known, sensitivity analysis was undertaken to 

quantify the implications of different parameterisations.  

Objective:  

Objective analysis should reduce potential bias and enables the end user to genuinely 

understand the results and therefore enables effective interpretation and application.  

• An iterative co-learning approach between the modelling team and WG was taken.  

• Effective engagement through regular meetings and workshops provided 

opportunities for suitable challenge.  

• The IMP framework was developed with a focus on transparency, with the model 

assumptions, results, and QA widely shared.  

Uncertainty-managed: 

This principle demands the identification, management, and communication of uncertainty 

throughout the analytical process.  

• Parameter uncertainty was addressed by sensitivity analysis.  

• Prediction uncertainty was addressed, where possible, through validation against a 

baseline.  

• Peer reviewed models, methods and the application of standard techniques was 

used wherever possible to minimise uncertainty of model choice.  

• Where an uncertainty was identified, this has been communicated within the 

consortium and WG.  

Robust: 

This principle argues the need to provide the analytical result in the context of uncertainty 

and limitations.  

• Expert interpretation of results was provided to support WG in the use of the IMP 

outputs in decision-making.  

• All assumptions and their implications were communicated transparently. 

This document, in combination with the assumptions document and supporting information 

details the framework within which the IMP was developed and the key QA processes 

undertaken for each model. Care must be taken in the interpretation of the results and must 

consider the assumptions made at each step of the modelling process.  

15.2 Conclusion 

An integrated modelling platform is complex by its very nature, as is the socio-ecological 

environment around which it is trying to support decisions. There are challenges with data 

availability, modelling capability and limits to what it is possible to know and understand. By 

explicitly addressing these challenges and being open and transparent about 
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methodologies, assumptions, limitations and the QA steps taken to understand them it is 

possible to gain insights into the behaviour of the socio-ecological system. Furthermore, by 

building the system iteratively through co-creation with government end users it is possible 

to better support decision-making through shared learning – about not only the system 

modelled, but where questions can and can’t be answered. In this way, an integrated 

modelling system can be understood as something other than a black box. Instead, 

becoming a system that is able to challenge presumptions, identify opportunities and avoid 

unintended consequences whilst helping governments and academics learn from each 

other. QA is critical to building understanding of the system, providing confidence in the 

limits of knowledge, avoiding modelling hubris and ultimately, providing better joined-up, 

cross-sectoral information to help decision-makers plan for the future. 
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16 Appendix A: Matching the Welsh Agricultural Survey to 

>1 FTE ERAMMP farms  

In the ERAMMP Integrated Modelling Platform only Welsh farm holdings that are above 1 full 

time equivalent (FTE) are included. Validation data held in the June Agricultural Survey 

(JAS) includes both these farms and those < 1 FTE. To compare SFARMOD outputs with 

JAS data the < 1 FTE farms need to be removed from the JAS data. 

This is done by using a scalar estimated from analysis of Standard Output and Standard 

Labour Requirements thresholds in the Welsh Farm Business Survey provided by the Welsh 

Government. The scalars used are listed: 

• Arable land 0.85 

• New grass 0.84 

• Permanent grass 0.71 

• Sole rights rough grazing 0.9 

• Dairy cattle numbers 0.99 

• Beef cattle numbers 0.78 

• Sheep numbers 0.9 

Within the JAC, there are 7,850 holding meeting both Standard Output and Standard labour 

Requirement Thresholds. This does not precisely align with the cut off used in with 

ERAMMP. Within the ERAMMP IMP there are 7,726 agricultural holdings with > 1 FTE 

modelled. 
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Table A-1: Key variables by farms being above thresholds for Standard Output and Standard Labour Requirement 
(from the Welsh Agricultural Survey, June 2019) 

  Both SO only 
SLR 
only 

Neither Total Both 
SO 
only 

SLR 
only 

Neither Total 

Farms 7,850 2,299 711 13,947 24,807 32% 9% 3% 56% 100% 

Economic proxies                     

Output 1,684,393 120,229 11,211 89,901 1,905,735 88% 6% 1% 5% 100% 

Labour 
requirement 

28,997 1,439 1,062 3,413 34,911 83% 4% 3% 10% 100% 

Land on farms                     

Perm Grass 800,339 133,733 16,806 175,440 1,126,318 71% 12% 1% 16% 100% 

Rough grazing 217,631 6,623 6,204 23,621 254,080 86% 3% 2% 9% 100% 

New grass 134,702 15,340 1,038 10,214 161,294 84% 10% 1% 6% 100% 

Crops & 
horticulture 

80,538 10,895 193 2,969 94,595 85% 12% 0% 3% 100% 

Woods & others 86,688 11,679 2,351 26,943 127,661 68% 9% 2% 21% 100% 

All land 1,319,898 178,271 26,591 239,188 1,763,948 75% 10% 2% 14% 100% 

Cattle                     

Dairy cows 248,994 2,112 6 480 251,592 99% 1% 0% 0% 100% 

Beef cows 127,755 24,510 226 11,326 163,817 78% 15% 0% 7% 100% 

Calves 269,583 37,703 203 13,528 321,017 84% 12% 0% 4% 100% 

Other cattle 317,394 50,939 223 14,862 383,418 83% 13% 0% 4% 100% 

All cattle 963,726 115,264 658 40,196 1,119,844 86% 10% 0% 4% 100% 

Other livestock                     

Sheep 8,594,792 166,077 138,353 634,394 9,533,616 90% 2% 1% 7% 100% 

Poultry 8,043,504 363,486 2,928 79,881 8,489,799 95% 4% 0% 1% 100% 

Pigs 16,160 3,557 186 4,528 24,431 66% 15% 1% 19% 100% 

Goats 7,328 403 327 4,964 13,022 56% 3% 3% 38% 100% 

Horses 15,422 874 9,705 19,219 45,220 34% 2% 21% 43% 100% 

Each farm is checked against thresholds for Standard Output and Standard Labour Requirement 

Thresholds                     

Output (€) 25,000                   

Labour (FTE) 1                   
Summary 
categories                     

Both Farms above both thresholds               

SO only Farms above SO threshold but below SLR threshold           

SLR only Farms below SO threshold but above SLR threshold           

Neither Farms below both thresholds               
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